
FROM OPTIMIZATION TO EQUILIBRATION:
UNDERSTANDING AN EMERGING PARADIGM IN

ARTIFICIAL INTELLIGENCE AND MACHINE
LEARNING

A Dissertation Presented

by

IAN GEMP

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2019

College of Information and Computer Sciences

© Copyright by Ian Gemp 2018

All Rights Reserved

FROM OPTIMIZATION TO EQUILIBRATION:
UNDERSTANDING AN EMERGING PARADIGM IN

ARTIFICIAL INTELLIGENCE AND MACHINE
LEARNING

A Dissertation Presented

by

IAN GEMP

Approved as to style and content by:

Sridhar Mahadevan, Chair

Phil Thomas, Member

Daniel Sheldon, Member

Mario Parente, Member

James Allan, Chair of the Faculty
College of Information and Computer Sciences

ACKNOWLEDGMENTS

I would like to begin by thanking my advisor, Sridhar Mahadevan. Sridhar in-

troduced me to Variational Inequality theory, providing a framework for formalizing

my ideas and enabling me to continue research on topics I find most interesting. I

would also like to thank my thesis committee members, Phil Thomas, Dan Sheldon,

and Mario Parente. I specifically want to thank Dan and Phil for taking the time to

discuss my research and to provide me with support and advice. I also want to thank

Mario and Darby Dyar for their mentorship during my research assistantships with

them throughout the course of my graduate studies.

Thank you to the faculty and staff of the College of Information and Computer

Sciences, who provided a welcoming and productive environment for my graduate

studies. Special thanks are due to Susan Overstreet and Leeanne Leclerc, without

whose support and patience I would be lost. Thanks also to the current and former

members of the Autonomous Learning Lab, an excellent group of graduate students

that I am proud to have as colleagues and friends.

Finally, and most importantly, I want to thank my family for their unfailing

encouragement and support. More than anyone, you know and shared in the trials

and tribulations I had to overcome to get here. Thank you.

iv

ABSTRACT

FROM OPTIMIZATION TO EQUILIBRATION:
UNDERSTANDING AN EMERGING PARADIGM IN

ARTIFICIAL INTELLIGENCE AND MACHINE
LEARNING

MAY 2019

IAN GEMP

B.Sc., UNIVERSITY OF NORTHWESTERN

B.Sc., UNIVERSITY OF NORTHWESTERN

M.Sc., UNIVERSITY OF NORTHWESTERN

M.Sc., UNIVERSITY OF MASSACHUSETTS, AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Sridhar Mahadevan

Many existing machine learning (ML) algorithms cannot be viewed as gradient

descent on some single objective. The solution trajectories taken by these algorithms

naturally exhibit rotation, sometimes forming cycles, a behavior that is not expected

with (full-batch) gradient descent. However, these algorithms can be viewed more

generally as solving for the equilibrium of a game with possibly multiple competing

objectives. Moreover, some recent ML models, specifically generative adversarial net-

works (GANs) and its variants, are now explicitly formulated as equilibrium problems.

Equilibrium problems present challenges beyond those encountered in optimization

v

such as limit-cycles and chaotic attractors and are able to abstract away some of the

difficulties encountered when training models like GANs.

In this thesis, I aim to advance our understanding of equilibrium problems so as

to improve state-of-the-art in GANs and related domains. In the following chapters,

I will present work on

1. designing a no-regret framework for solving monotone equilibrium problems in

online or streaming settings (with applications to Reinforcement Learning),

2. ensuring convergence when training a GAN to fit a normal distribution to data

by Crossing-the-Curl,

3. improving state-of-the-art image generation with techniques derived from the-

ory,

4. and borrowing tools from dynamical systems theory for analyzing the complex

dynamics of GAN training.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . iv

ABSTRACT . v

LIST OF TABLES . xi

LIST OF FIGURES .xiii

CHAPTER

INTRODUCTION . 1

1. TECHNICAL BACKGROUND AND MOTIVATING
PROBLEMS . 5

1.1 Optimization . 5

1.1.1 Convex Optimization . 6
1.1.2 Online Optimization . 9

1.2 Equilibration and Game Theory . 11

1.2.1 Generative Adversarial Networks . 12
1.2.2 Dynamical Systems . 14
1.2.3 Variational Inequalities and Monotone Operator Theory 15

1.3 Motivating Problems . 17

2. ONLINE MONOTONE EQUILIBRATION . 19

2.1 Purpose of Research . 19
2.2 Introduction . 19
2.3 Performance Metric . 21

2.3.1 Online Variational Inequality Problems . 24

vii

2.4 Online Monotone Equilibration . 25
2.5 Upper Bound for Cumulative Path Integral Loss . 27

2.5.1 Derivation of No-Regret Algorithms for OME 29

2.6 Algorithmic Game Theory and Related Work . 31
2.7 Applications . 33

2.7.1 Concave Games . 34
2.7.2 A Machine Learning Economy (SM) . 34
2.7.3 GTD Algorithms (M) . 35
2.7.4 Constant-Linear GANs (M) . 38

2.8 Conclusion . 39

2.8.1 Up Next . 39

3. LINEAR QUADRATIC GANS AND
CROSSING-THE-CURL . 40

3.1 Purpose of Research . 40
3.2 Introduction . 41
3.3 Generative Adversarial Networks . 43
3.4 Convergence of Equilibrium Dynamics . 44

3.4.1 Variational Inequalities . 44
3.4.2 The ODE Method and Hurwitz Jacobians . 46

3.5 The Linear Quadratic GAN . 47
3.6 Crossing-the-Curl . 48

3.6.1 Discussion and Relation to Other Methods 49

3.7 Analysis of the Full System . 52

3.7.1 Learning the Variance: The (w2, a)-Subsystem 53
3.7.2 Learning the Covariance: The (W2, A)-Off-Diagonal

Subsystem . 55

3.8 Experiments . 58
3.9 Conclusion . 59

3.9.1 Up Next . 59

4. GENERATIVE MULTI-ADVERSARIAL NETWORKS 60

4.1 Purpose of Research . 60

viii

4.2 Introduction . 61
4.3 Generative Adversarial Networks to GMAN . 61

4.3.1 GMAN: A Multi-adversarial Extension . 62

4.4 A Forgiving Teacher . 63

4.4.1 Soft-Discriminator . 63
4.4.2 Using the Original Minimax Objective . 64
4.4.3 Automating Regulation . 65

4.5 Evaluation . 66

4.5.1 Metric . 66
4.5.2 Experiments . 67

4.6 Conclusion and Future Work . 69

4.6.1 Up Next . 70

5. ANALYZING NON-MONOTONE GAMES . 72

5.1 Purpose of Research . 72
5.2 Introduction . 73
5.3 Identifying Boundaries of Attraction . 73
5.4 Improving the BoA Identification Algorithm. 77
5.5 A New Market Model . 79
5.6 Cloud Services Experiment . 81
5.7 Lyapunov GANs. 83
5.8 GAN Experiments . 85

5.8.1 CL and LQ-GAN . 86
5.8.2 Mixture of Gaussians . 89
5.8.3 MNIST . 89
5.8.4 CIFAR-10 . 90

5.9 Conclusion and Future Work . 92

6. CONCLUSION AND FUTURE WORK . 93

6.1 Future Work . 95

APPENDICES

A. ONLINE MONOTONE EQUILIBRATION . 98

ix

B. LINEAR QUADRATIC GANS AND
CROSSING-THE-CURL . 149

C. GENERATIVE MULTI-ADVERSARIAL NETWORKS 228
D. ANALYZING NON-MONOTONE GAMES . 236

BIBLIOGRAPHY . 240

x

LIST OF TABLES

Table Page

2.1 Games may share multiple properties at once. Definitions of
properties and examples for each case (denoted by the column
heading) are given in Appendix A.8. 33

3.1 Existing convergence rates for VI algorithms in different settings. 45

3.2 For convenience, we summarize many of our theoretical results in this
table. Legend: M=Monotone, C=Convex, H=Hurwitz,
S=Strongly, s=Strictly, P=Pseudo, Q=Quasi, /=Not. 56

3.3 Each entry in the table reports two quanities. First is the average
number of steps, k, required for each dynamical system, e.g.,
ẋ = −F (x), to reduce ||xk − x∗||/||x0 − x∗|| to 0.001 for the
(W2, A)-subsystem. The second, in parentheses, reports the
fraction of trials that the algorithm met this threshold in under
100,000 iterations. Dim denotes the dimensionality of x ∼ p(x) for
the LQ-GAN being trained (with |θ|+ |φ| in parentheses). For
each problem, x0 is randomly initialized 10 times for each of ten
randomly initialized Σ’s, i.e., 100 trials per cell. Extragradient
(EG) is run with a fixed step size. All other ODEs are solved via
Heun-Euler with Phase Space Error Control [44]. 58

4.1 Pairwise GMAM metric means with stdev for select models on
MNIST. For each column, a positive GMAM indicates better
performance relative to the row opponent; negative implies worse.
Scores are obtained by summing each variant’s column. 69

5.1 LE spectrum for continuous-time attractors. 76

B.1 Table of vector field maps where V is the minimax objective, ρk is a
stepsize, ∆k is # of unrolled steps, Σ is the sample covariance
matrix, N is the row of A being learned, and α, γ, β, η are
hyperparameters. 153

xi

C.1 Pairwise GMAM metric means for select models on MNIST. For each
column, a positive GMAM indicates better performance relative
to the row opponent; negative implies worse. Scores are obtained
by summing each column. 229

C.2 Pairwise GMAM metric means for select models on CIFAR-10. For
each column, a positive GMAM indicates better performance
relative to the row opponent; negative implies worse. Scores are
obtained by summing each column. GMAN variants were trained
with two discriminators. 230

C.3 Inception score means with standard deviations for select models on
CIFAR-10. Higher scores are better. GMAN variants were trained
with two discriminators. 230

C.4 Pairwise GMAM metric means for select models on CIFAR-10. For
each column, a positive GMAM indicates better performance
relative to the row opponent; negative implies worse. Scores are
obtained by summing each column. GMAN variants were trained
with five discriminators. 230

C.5 Inception score means with standard deviations for select models on
CIFAR-10. Higher scores are better. GMAN variants were trained
with five discriminators. 230

D.1 The polynomial function coefficients, β, for tc = 1. Viable coefficients
can be derived for any tc ∈ [1, 3.8] (see supplementary
Mathematica file for derivation). Outside of that range, the
demand function begins to lose properties such as monotonicity
and/or the existence of the elastic/inelastic region. 237

D.2 Cloud cost function coefficients. 237

D.3 Client preferences. 238

D.4 Client scale factors. 238

D.5 Business preferences. 238

D.6 Cloud cost function coefficients. 239

D.7 Client preferences. 239

D.8 Client scale factors. 239

xii

LIST OF FIGURES

Figure Page

1.1 This figure depicts the convex function f(x) = |x| and its epigraph:
the set defined by the space above the function. Note that any
line segment connecting two points in the epigraph is wholly
contained in the epigraph—therefore the epigraph of |x| is convex,
therefore f(x) is convex. 7

1.2 Our work presented in Chapter 4 can be used to accelerate training
and improve the quality of generated samples. On the left, we
show samples drawn from a generator G trained using techniques
from this thesis on the MNIST handwritten digits dataset [64].
The rows show how the generated samples improve in quality
throughout the training epochs. Our work motivated followup
work [57] that led to the extremely high sample quality on the
right for the CelebA dataset [69]. Note that the images shown are
not of real celebrities—they were formed by the generator. 13

1.3 This figure provides a geometric interpretation of the variational
inequality V I(F,X). The mapping F defines a vector field over
the feasible set X such that at the solution point x∗, the vector
F (x∗) is directed inwards at the boundary, and −F (x∗) is an
element of the normal cone C(x∗) of X at x∗ where the normal
cone C(x∗) at the vector x∗ of a convex set X is defined as
C(x∗) = {y ∈ Rn|〈y, x− x∗〉 ≤ 0,∀x ∈ X}. 16

2.1 This figure shows the contour plot for the function representing the
path integral over a 2-D monotone field, F (x, y)—observe the
path integral function displayed in title. Notice in the inset that
the function value in the interior of the line segment is greater
than the function value at either endpoint. This implies that the
function is not even quasi-convex, a weaker condition than
convexity. The definition of the field and derivation of the path
integral can be found in Appendix A.2.2. 27

2.2 Demonstration of OMP on the described machine learning network.
The dotted line denotes the upper bound derived for the regret of
OMP. 36

xiii

3.1 The goal is to find the equilibrium point (denoted by the star) of the
merry-go-round. If someone follows simultaneous gradient
descent, she will ride along in circles forever. However, if she
travels perpendicularly to this direction, a.k.a. Crosses-the-Curl,
she will arrive at the equilibrium. 42

3.2 Vector field plot of Fw1,b for µ = 0 with Extragradient, xegk+1 (see
updates (3.9) and (3.10)), simultaneous gradient descent, xk+1,
and Crossing-the-Curl, xcck+1, updates overlayed on top. 48

3.3 A Taylor series expansion of Extragradient (3.11) and the consensus
algorithm (3.12). 50

3.4 (Left) Comparison of trajectories on the (w2, a)-subsystem. The
vector field plotted is for the original system, ẋ = −Fw2,a(x).
Observe how Fw2,a

cc takes a more direct route to the equilibrium.
(Right) Maps derived after rescaling Fw2,a

cc and Fw2,a
eg 54

4.1 (GMAN) The generator trains using feedback aggregated over
multiple discriminators. If F ≡ max, G trains against the best
discriminator. If F ≡ mean, G trains against an ensemble. We
explore other alternatives to F in Subsections 4.4.1 and 4.4.3 that
improve on both these options. 63

4.2 Generator objective, F , averaged over 5 training runs on MNIST.
Increasing the number of discriminators accelerates convergence of
F to steady state (solid line) and reduces its variance, σ2 (filled
shadow ±1σ). Figure 4.3 provides alternative evidence of
GMAN∗’s accelerated convergence. 68

4.3 Stdev, σ, of the generator objective over a sliding window of 500
iterations. Lower values indicate a more steady-state. GMAN∗

with N = 5 achieves steady-state at ≈2x speed of GAN (N = 1).
Note Figure 4.2’s filled shadows reveal stdev of F over runs, while
this plot shows stdev over iterations. 68

4.4 Comparison of image quality across epochs for N = {1, 2, 5} using
GMAN-0 on MNIST. 69

4.5 GMAN∗ regulates difficulty of the game by adjusting λ. Initially, G
reduces λ to ease learning and then gradually increases λ for a
more challenging learning environment. 70

4.6 Pairwise GMAM
stdev(GMAM)

for GMAN-λ and GMAN∗ (λ∗) over 5 runs on
MNIST. 70

xiv

4.7 Image quality improvement across number of generators at same
number of iterations for GMAN-0 on CelebA. 71

4.8 Images generated by GMAN-0 on the CIFAR-10 dataset. 71

5.1 Stable spiral (left) and limit cycle (right, dashed). 74

5.2 The probabilities of points farther along the trajectory (white to
black) should be reduced as they are most likely far away from
any boundary. These adjustments can be shared with the
surrounding grid points. 79

5.3 Proposed demand function Qij(tij) with tc = 1. 80

5.4 Basins of attraction are marked stable or unstable and differentiated
by pattern, each with a gradient that runs from most likely
belonging to the region (dark) to least likely (light). Boundaries
are marked by black lines. 82

5.5 [Det] Top two Lyapunov exponents vs iterations for CL-GAN trained
with simultaneous gradient descent (left) and the consensus
algorithm (right). 87

5.6 [Sto] Top two Lyapunov exponents vs iterations for CL-GAN trained
with simultaneous gradient descent (left) and the consensus
algorithm (right). 88

5.7 [Det] Top two Lyapunov exponents vs iterations for LQ-GAN trained
with the consensus algorithm (left) and weights projected onto
the first two columns of ψ (right). The trajectory of Λ1,2 over
iterations reveals that the system is initially chaotic (positive
leading exponent) and then converges toward a limit cycle (near
zero leading exponent). The trajectory of the weights projected
onto ψ supports this conclusion: initial portions of the trajectory
(light gray) exhibit chaos while later portions (black) reveal cyclic
behavior. 88

5.8 [Det] Top two Lyapunov exponents (left), minimax loss (2nd column),
Euclidean norm of the weights (3rd column), and final samples
(right) vs iterations for a GAN trained with RMSProp+consensus
on a mixture of 8 Gaussians (top row). Training is continued
without RMSProp in the bottom row. We also tried rescaling the
gradients by the final exponentially averaged norms obtained by
RMSProp, but have not presented them here because this
approach immediately diverged (NaNs). 89

xv

5.9 [Det] Top two Lyapunov exponents (left), minimax loss (2nd
column), Euclidean norm of the weights (3rd column), and final
samples (right) vs iterations for a GAN trained with
RMSProp+consensus on a mixture of 25 Gaussians (top row).
Training is continued without RMSProp in the middle row. We
also tried rescaling the gradients by the final exponentially
averaged norms obtained by RMSProp (bottom row). 90

5.10 [Sto] Top two Lyapunov exponents (left), minimax loss (2nd column),
Euclidean norm of the weights (3rd column), and final samples
(right) vs iterations for a GAN trained on MNIST with
RMSProp+consensus (top) and then just consensus (bottom). 91

5.11 [Sto] Top two Lyapunov exponents (left), minimax loss (2nd column),
Euclidean norm of the weights (3rd column), and final samples
(right) vs iterations for a GAN trained on CIFAR-10 with
RMSProp+consensus (top) and then just consensus (bottom). 91

5.12 Projection of the generator and discriminator weights onto the top
two principal components vs iterations for a GAN trained on
MINST (left) and CIFAR-10 (right) using RMSProp. 92

A.1 Illustrative comparison of two-step,
∫ xt
ot
−
∫ x∗
ot

, to one-step loss,∫ xt
x∗

. 114

A.2 Illustrative comparison of auto-welfare to a game-agnostic loss.
Online optimization provides theory for regret measured only
along the edges of the square (axis aligned), while online
monotone equilibration additionally measures regret along
diagonals (any line). 117

B.1 Fcon (top) vs Flin (bottom) on a mixture of Gaussians (left) and
CIFAR10 (right). Each column of images corresponds to an epoch
with epochs increasing left to right. 224

B.2 Fcon (top row) vs Flin (bottom row) on a mixture of Gaussians.
Contour plots of discriminator along with samples in red shown
for Fcon (left) and Flin (right). 225

B.3 Fcon (top row) vs Flin (bottom row) on CIFAR10. Images generated
at final iteration shown for Fcon (left) and Flin (right). 226

xvi

C.1 Generator objective, F , averaged over 5 training runs on CelebA.
Increasing N (# of D) accelerates convergence of F to steady
state (solid line) and reduces its variance, σ2 (filled shadow ±1σ).
Figure C.2 provides alternative evidence of GMAN-0’s accelerated
convergence. 228

C.2 Stdev, σ, of the generator objective over a sliding window of 500
iterations. Lower values indicate a more steady-state. GMAN-0
with N = 5 achieves steady-state at ≈2x speed of GAN (N = 1).
Note Figure C.1’s filled shadows reveal stdev of F over runs, while
this plot shows stdev over time. 228

C.3 Generator objective, F , averaged over 5 training runs on CIFAR-10.
Increasing N (# of D) accelerates convergence of F to steady
state (solid line) and reduces its variance, σ2 (filled shadow ±1σ).
Figure C.4 provides alternative evidence of GMAN-0’s accelerated
convergence. 229

C.4 Stdev, σ, of the generator objective over a sliding window of 500
iterations. Lower values indicate a more steady-state. GMAN-0
with N = 5 achieves steady-state at ≈2x speed of GAN (N = 1).
Note Figure C.3’s filled shadows reveal stdev of F over runs, while
this plot shows stdev over time. 229

C.5 Sample of images generated on CelebA cropped dataset. 231

C.6 Sample of images generated by GMAN-0 on CIFAR dataset. 232

C.7 Example of images generated across four independent runs on
MNIST with boosting. 234

D.1 Individual profit functions may be non-concave. 237

xvii

INTRODUCTION

Artificial Intelligence (AI) focuses on the design of agents that act rationally. The

Maximum Expected Utility (MEU) principle formalizes the behavior of a rational

agent as the solution to an optimization problem: max
action

E[U(action)]. This principle

has pulled optimization to the center of attention in AI and Machine Learning (ML),

however, a new paradigm is emerging. Many existing algorithms such as those in

Reinforcement Learning (RL) or inference in graphical models can be viewed as solv-

ing for an equilibrium rather than an optimum. Moreover, some recent ML models,

specifically generative adversarial networks (GANs) and its variants, are now explic-

itly formulated as equilibrium problems.

Equilibrium problems present their own set of unique difficulties. One common

difficulty of equilibrium problems not shared by optimization is the existence of cyclic

or oscillatory behavior during the solution process. Properties like these pose real

challenges for ML researchers tackling an equilibrium approach to ML. In fact, the

domains described above all exhibit important, practical problems caused by the

nature of equilibration: “divergence of...TD” [35]; “One of the main problems with

loopy belief propagation is nonconvergence...often due to oscillations” [60]; “[GANs

are] known to be notoriously hard to train” [74].

Optimization has been studied within the context of ML for decades, leading to

new algorithms and even the study of new problems such as Online Optimization.

Traditionally, equilibration has not seen the same attention, however, it has risen to

the forefront recently with the advent of GANs. GANs have highlighted our lack

of theoretical and empirical understanding of these problems. In order to improve

1

upon the performance of current equilibration-based models, we must elevate our

understanding of equilibration, especially within the context of ML.

In my thesis, I aim at both theoretical and empirical advances in equilibration

within the context of ML. Theoretical advances necessarily focus on simpler domains

where analysis is tractable. The hope is that advances here will transfer to useful

heuristics in more complex domains. I also develop tools for analyzing more complex

domains—these tools should be useful, especially when intuitions derived from a

simpler theoretical understanding fail.

The first contribution of the thesis is Online Monotone Equilibration

(OME), a framework for studying monotone equilibrium problems in an online (pos-

sibly adversarial) scenario. As comparison, the Online Optimization framework can

be used for studying optimization-based machine learning models that are expected

to learn as they consume data from a (possibly adversarial) data source. This is par-

ticularly useful in this era of Big Data where models must process data in a streaming

fashion to ensure realistic training times. An analogous framework for equilibration

is lacking. The OME framework subsumes the well known Online Convex Optimiza-

tion framework and defines a notion of regret that applies to both optimization and

equilibrium problems. A close inspection of this framework motivates an algorithm

presented in the second chapter.

The second contribution of the thesis is an analysis of the Linear-Quadratic

GAN (LQ-GAN), as well as an algorithm with convergence guarantees for equi-

librating this model. The Linear-Quadratic GAN has recently been proposed as

an important test problem for equilibration. Solving the LQ-GAN is equivalent to

fitting a multivariate-Gaussian to data, making this a fundamental generative mod-

eling problem as well. Despite the simplicity of the task, this model is deceptively

complex. Technically speaking, the corresponding equilibrium problem is not even

quasi-monotone. Despite this challenge, our analysis reveals that there exists an el-

2

egant solution to this problem that may generalize to more complex domains; we

call the successful technique Crossing-the-Curl . A specific aspect of our solution

technique supports a practical approach for training neural network based GANs that

we explore in the next chapter.

The third contribution of the thesis is Generative Multi-Adversarial

Networks (GMAN), a framework that extends GANs to multiple discriminators.

A GAN is modeled as a two-player minimax game, but equilibration is more generally

studied with N players. We show that introducing more discriminators into the

standard GAN framework reduces variance of the minimax objective, improves the

quality of the resulting samples that are generated, and accelerates convergence of the

GAN to a steady-state minimax loss. In the final chapter, we examine the dynamics

at the end of training and study whether convergence of the loss implies convergence

of the weights.

The fourth contribution of the thesis applies an analytical tool, Lyapunov

Exponent Computation (LEC), to very large, stochastic equilibrium problems.

Lyapunov exponents (LEs) are vectors that concisely summarize the behavior of a

dynamical system (DS). For instance, if an LE associated with a certain region of

a DS contains N leading zeros, all initial states in that region of the DS converge

to an N -torus. Information like this could prove valuable to judging the tractability

of GAN variants, studying weight initialization, and more. The number of weights

learned in a GAN is in the thousands and millions. Lyapunov Exponent (LE) com-

putation is typically used to study the dynamics of deterministic physical systems

(i.e., 3-D). Extending LEC to GANs requires streamlining traditional LEC by way of

approximations.

The chapters are organized in order of the contributions listed above. Each chapter

begins by discussing the purpose (importance) of the research topic and then presents

3

work towards the intended contribution. The chapter then concludes with a summary

of results.

4

CHAPTER 1

TECHNICAL BACKGROUND AND MOTIVATING
PROBLEMS

In this chapter, we will provide some useful tools and results from convex anal-

ysis, online convex optimization, game theory, GANs, variational inequalities, and

monotone operator theory.

1.1 Optimization

We will now formalize and abstract the meaning of a continuous optimization

problem. Discrete or combinatorial optimization lies outside the scope of this thesis.

Let f : X → R be a function that maps each input in the set X to a real number.

The set X may be Rn or it may be a subset of Rn. In the case that X ⊂ Rn, the

optimization problem is called a constrained optimization problem. The optimization

problem is to find the x ∈ X that minimizes f(x), written as

min
x∈X

f(x), (1.1)

where f(x) is called the objective function. Note that we can equivalently formulate

this problem as a maximization problem with

max
x∈X
−f(x). (1.2)

We denote any x that minimizes f(x) as x∗, also written as

x∗ ∈ arg min
x∈X

f(x). (1.3)

5

As an example, consider the ordinary least squares method for linear regression.

This is one of the most common and well studied techniques in discriminative pre-

diction. Assume we have a dataset of n input-output pairs, (x, y), where x ∈ Rm+1

is a vector augmented with a 1, and y ∈ Rp is also a vector. The goal is to learn

the parameters of a function, f(x) = Ax, that minimize the sum of squared errors

between the true outputs and the outputs predicted by the function. Let X be a

matrix whose columns consist of the x’s and let Y be a matrix whose columns consist

of the y’s. Let A ∈ Rp×(m+1) be a matrix containing the parameters of f(x). Note

that we can consider A to be the vector a ∈ Rpm+p reshaped. Then we can formulate

our goal of fitting a line to the data as the following optimization problem

min
a∈Rpm+p

||Y − AX||22 = min
A∈Rp×(m+1)

n∑
i=1

p∑
j=1

(
Yji −

m+1∑
k=1

AjkXki

)2

(1.4)

where || · || represents a norm. The squared Euclidean norm is given by || · ||22. We

typically write this as an optimization over A noting the equivalence between a and

A:

min
A∈Rp×(m+1)

||Y − AX||22. (1.5)

1.1.1 Convex Optimization

The example above actually has two very important properties. The first is that

the set X is convex. A set X is convex if and only if for every x0 ∈ X , xf ∈ X , and

t ∈ [0, 1],

(1− t)x0 + txf ∈ X . (1.6)

In other words, X is convex if any line segment connecting any two vectors in X lies

completely in X .

6

Figure 1.1: This figure depicts the convex function f(x) = |x| and its epigraph: the
set defined by the space above the function. Note that any line segment connecting
two points in the epigraph is wholly contained in the epigraph—therefore the epigraph
of |x| is convex, therefore f(x) is convex.

The second important property is that the objective function is convex. The

convexity of a function can actually be defined similarly to above using its epigraph

(see Figure 1.1), but we will choose an alternate definition to better match other

properties that we will present later in this proposal. Before we define convexity

for a function, we first define its subdifferential. The subdifferential of a convex

function, f : X → R, at x, denoted ∂f(x), is the set of all subgradients at x, i.e.,

∂f(x) = {z : ∀x′ ∈ X , 〈z, x′ − x〉 ≤ f(x′) − f(x)}; in other words, a first order

Taylor series expansion about x using z ∈ ∂f(x) as the first derivative ensures that

the Taylor series approximation does not overestimate the function anywhere else.

Finally, a function, f , is convex if

∀x ∈ X , x′ ∈ X , z ∈ ∂f(x), z′ ∈ ∂f(x′),

〈z − z′, x− x′〉 ≥ 0. (1.7)

By appealing to finite difference approximations, we can also view this as requiring

the function to have positive semi-definite Hessian, H � 0. Let v = x − x′ and

note that a Hessian-vector product can be approximated as H · v ≈ z − z′ where x,

x′, z, and z′ are defined as before. Then 〈z − z′, x − x′〉 ≥ 0 is implicitly requiring

7

v>Hv ≥ 0 for all v but is well defined even when H is not available, i.e., f is not

twice differentiable.

A necessary first order condition for optimality of x∗ is

∃z∗ ∈ ∂f(x∗) such that 〈z∗, x′ − x∗〉 ≥ 0 ∀x′ ∈ X . (1.8)

For convex optimization problems, this is also a sufficient condition. If the subdif-

ferential of f contains only a single subgradient at each x, ∂f(x) is more commonly

referred to as the gradient, written ∇f(x).

Convex optimization problems are of particular interest because there exist many

techniques to solve them that come with convergence guarantees. One of the most

popular algorithms for solving continuous convex optimization problems is projected

subgradient descent,

Algorithm 1 Projected Subgradient Descent (PSGD)

input: A scalar learning rate schedule, e.g., η = 1√
k

x1 = 0
for all k = 1, 2, . . . do
xk+1 = PX (xk − ηzk) where zk ∈ ∂f(xk)

end for

where PX (ξ) denotes the projection of ξ onto the set X . Note that the projection

operation is also defined as an optimization problem

PX (ξ) = arg min
x∈X

||ξ − x||. (1.9)

Projected subgradient descent has a convergence rate of O(1√
k
). This means that

f(xbest
k) − f(x∗) is O(1√

k
), which implies that we need O(1

ε2
) iterations to achieve

f(xbest
k) − f(x∗) ≤ ε where xbest

k is the iterate with the lowest error so far, i.e.,

xbest
k = xk∗ where k∗ = arg min{1,...,k} f(xk).

8

When the projected subgradient algorithm is run on an unconstrained, differen-

tiable optimization problem, i.e., without the projection operator and using gradients

instead of subgradients, it is more commonly known as gradient descent. We will

refer to the projected subgradient algorithm more concisely as gradient descent from

now on. We refer the reader to the book by Boyd and Vandenberghe [2004] for a

comprehensive review of convex optimization.

1.1.2 Online Optimization

Online optimization is important for training machine learning models on stream-

ing datasets when we require the model to begin making predictions before seeing all

of the data. Fore example, consider the least squares linear regression problem again,

min
A∈Rp×(m+1)

n∑
i=1

m∑
j=1

(
m+1∑
k=1

AjkXki − Yji)2. (1.10)

We can rewrite this more generally as

min
x∈X

R(x) +
n∑
i=1

fi(x). (1.11)

where R(x) = 0 in the above least squares problem. This particular form occurs

throughout machine learning with datasets whose samples are assumed to be inde-

pendent and identically distributed (i.i.d.). We typically want to minimize the sum

of errors for each data point in the dataset (just like least squares linear regression).

In this case, fi(x) is typically f(x, datai) where x represents the parameters (e.g., A)

and datai represents an (x, y) pair. The function, R(x), is called a regularizer and

was introduced to bias the solution x∗ towards an x with properties more desirable

to the specific problem at hand. We will consider a natural choice for R(x) later.

Now, assume we solve the least squares regression problem by minimizing the

above objective over n samples. We then decide to employ our linear regressor in

9

production to start taking advantage of its predictive power. However, we continue

to receive more data. Should we choose to re-solve our least squares problem once

we meet some criteria such as “our dataset doubled in size” or “our predictions no

longer seem accurate”? Online optimization presents a framework for tackling this

dilemma and suggests a solution where we can train our regressor by simply adjusting

its parameters a small amount as every new (x, y) pair is observed.

If each fi is convex and R(x) = 1
2η
||x||22, it can be shown that there exists a natural

extension of gradient descent that is actually equivalent to resolving the least squares

linear regression problem on the entire dataset as the number of samples goes to

infinity. This framework is known as Online Convex Optimization, and it generalizes

beyond least squares linear regression to any sequence of convex losses. Online Convex

Optimization is presented below along with the algorithm described, online gradient

descent (note that in this case, x denotes the parameters being learned).

Framework 1 Online Convex Optimization (OCO)

input: A convex set X
for all t = 1, 2, . . . do

predict a vector xt ∈ X
receive a convex loss function ft : X → R
suffer loss ft(xt)

end for

Algorithm 2 Online Gradient Descent (OGD)

input: A scalar learning rate η > 0
x1 = 0
for all t = 1, 2, . . . do
xt+1 = xt − ηzt where zt ∈ ∂ft(xt)

end for

In the context of online learning, we often measure performance with regret. Regret

measures how much worse off we are by making our predictions online rather than

10

waiting for all the data to arrive and computing the best parameters offline in batch

form. Regret is defined as

regret =
T∑
t=1

ft(xt)−min
x∈X

T∑
t=1

ft(x) =
T∑
t=1

ft(xt)− ft(x∗). (1.12)

We suggest the book by Shalev-Shwartz [2011] as a reference for online convex opti-

mization.

1.2 Equilibration and Game Theory

As discussed in the introduction, not all machine learning problems are formulated

and solved as optimization problems. We mentioned two in which solving a machine

learning problem amounted to finding an equilibrium point: reinforcement learning

and generative adversarial networks. We now formalize the notion of an equilibrium

within the framework of games.

We will begin at the intersection of optimization and game theory—1-player

games. In a 1-player game, player 1’s goal is to minimize its loss function, f (1)(x(1))

by adjusting the variables under its control, x(1). Player 1 can solve this as an opti-

mization problem

min
x(1)∈X (1)

f (1)(x(1)). (1.13)

If we generalize this to an N -player game, player 1’s loss may now additionally depend

on other players’ variables, f (1)(x(1)) becomes f (1)(x(1), . . . , x(N)). We write the vector

containing all N players’ variables concisely as x. In this case, x must belong to the

product space of the N players’ sets, i.e., X = X (1) × · · · × X (N). We denote the

vector containing all the player variables except player i as x(−i). Now we can say

11

that, given all other players’ variables are fixed, the goal of each player i is to solve

the optimization problem

min
x(i)∈X (i)

f (i)(x). (1.14)

This is where optimization falls short in describing the problem. If player 1 solves

this problem with all other players fixed, the solution will likely be one that exploits

all the other players. For example, player 2 may be very displeased with the solution

found by player 1 and choose to fix player 1’s and all other players’ variables and

find a solution with lower f (2). Essentially, the problem with games is pleasing all

the players simultaneously. One such notion that captures this ideal is the Nash

equilibrium. The vector of player variables, x∗, constitutes a Nash equilibrium [83] if

no single player i can reduce their loss by deviating from x∗(i) with all other player

variables fixed. More formally, let x̃(i) be the vector of player strategies where player i

plays any x(i) ∈ X (i) and player j 6= i plays x∗(j). Then the vector of player variables,

x∗ ∈ X , is a Nash equilibrium if for all i and all x(i) ∈ X (i), f (i)(x̃(i)) ≥ f (i)(x∗). We

denote the set of all Nash equilibria by X ∗.

1.2.1 Generative Adversarial Networks

As an example application of Nash equilibria to ML, consider generative adversar-

ial networks (GANs). The goal of a GAN is to learn a function capable of transforming

a noisy random variable, z, into a distribution that matches the true distribution of

some data source, pdata(x). Typically the transformation function used is a neural

network. The problem of learning this function is framed as a two-player minimax

game, a special type of game where f (1) = −f (2). In this game, the transformation

function is referred to as the data generator, G, and the other player is referred to as

the discriminator, D. The role of the discriminator is to predict whether or not the

data generated by G came from pdata(x). The game can be written as follows

12

Figure 1.2: Our work presented in Chapter 4 can be used to accelerate training and
improve the quality of generated samples. On the left, we show samples drawn from
a generator G trained using techniques from this thesis on the MNIST handwritten
digits dataset [64]. The rows show how the generated samples improve in quality
throughout the training epochs. Our work motivated followup work [57] that led to
the extremely high sample quality on the right for the CelebA dataset [69]. Note that
the images shown are not of real celebrities—they were formed by the generator.

min
G

max
D

V (D,G) = Ex∼pdata(x)

[
logD(x)

]
+ Ez∼pz(z)

[
log(1−D(G(z)))

]
. (1.15)

Goodfellow [40] was able to show that the equilibrium point of this game is the

minimizer of the following optimization problem for the generator

min
G
− log(4) + 2 · JSD(pdata||pG) (1.16)

where JSD denotes the Jensen-Shannon divergence, and pG is the distribution defined

by applying the generator’s transformation function to pz(z). The Jensen-Shannon

divergence is always positive except when its two arguments are equal, so this opti-

mization problem is only solved when pdata = pG, i.e., when the generating distribution

matches the true distribution, which achieves the goal.

In this way, GANs formulate the solution to an optimization problem as the

solution to an equilibrium problem. In general, it is not yet clear why one would

prefer one formulation to another, but empirical results with GANs have shown them

to learn qualitatively more accurate distributions of the data. Later on, we give a

13

theoretical motivation for why games may provide more representational power than

optimization.

1.2.2 Dynamical Systems

This thesis will focus on the interactions between the different players’ learning

algorithms when employed together in a game. In general, we will analyze the vector

field implied by the player’s learning algorithms. We will assume player i’s learning

rule can be written as x
(i)
k+1 = x

(i)
k − αF (i)(xk) where α > 0 is a learning rate hy-

perparameter. We can then represent the simultaneous learning of all N agents as

follows:

F (x) = [F (1)(x), . . . , F (N)(x)] (1.17)

xk+1 = xk − αF (xk). (1.18)

For instance, if F (i)(xk) = ∇x(i)f
(i)(xk) where ∇v is Feynman notation for taking

the gradient with respect to the variable v only, then this update represents learning

using simultaneous gradient descent. We will refer to −F as the dynamics of the

game and F as the (vector) field or map represented by the game. The connection

to dynamical systems can be understood informally as reformulating the update in

Equation (1.18) and taking the limit as the learning rate goes to zero. First, replace α

with ∆t for convenience. Then let t = k∆t so that x indexed by k, xk, corresponds to

x evaluated at time t, x∆t(t), where ∆t denotes the conversion factor between index

and time. Then by definition,

14

xk+1 = xk −∆tF (xk) (1.19)

⇒ xk+1 − xk = −∆tF (xk) (1.20)

⇒ xk+1 − xk
∆t

= −F (xk) for all ∆t 6= 0 (1.21)

⇒ x∆t(t+ ∆t)− x∆t(t)

∆t
= −F (x∆t(t)) (1.22)

⇒ lim
∆t→0

x∆t(t+ ∆t)− x∆t(t)

∆t
= −F (x∆t(t)) (1.23)

⇒ dx∆t

dt
= ẋ∆t = −F (x∆t). (1.24)

This derivation is informal because a bijection between the natural numbers (indices)

and real numbers (times) does not exist. Nevertheless, it should appeal to intuition

and the connection is formalized in the book by Nagurney and Zhang [1996]. Unless

stated otherwise, we will assume simultaneous gradient descent is used for learning.

We suggest the book by Strogatz [2018] as an excellent introduction to dynamical

systems.

1.2.3 Variational Inequalities and Monotone Operator Theory

We now show how a specific class of equilibrium problems subsume continuous,

convex optimization problems. Just like in convex optimization problems, we will

assume X is a convex set.

The equilibrium problem can be formalized with the theory of variational inequal-

ities (VIs) [43]. The VI problem is to find x∗ such that

〈F (x∗), x′ − x∗〉 ≥ 0 ∀x′ ∈ X , (1.25)

where F : X → Rm. Notice that this is a simple generalization of the sufficient

condition for the minimum of a convex function (i.e., replace F in Equation (1.8)

with ∇f). Also x∗ is a solution to the VI if and only if x∗ = PX (x∗ − ηF (x∗))

where PX is a projection on to X . Figure 1.3 provides a geometric interpretation

15

Normal Cone

-F(x*)

F(x*)

x*x x-x*

Feasible set K

Figure 1.3: This figure provides a geometric interpretation of the variational inequality
V I(F,X). The mapping F defines a vector field over the feasible set X such that at the
solution point x∗, the vector F (x∗) is directed inwards at the boundary, and −F (x∗)
is an element of the normal cone C(x∗) of X at x∗ where the normal cone C(x∗) at the
vector x∗ of a convex set X is defined as C(x∗) = {y ∈ Rn|〈y, x− x∗〉 ≤ 0,∀x ∈ X}.

of a variational inequality. In summary, the VI problem is to find an x∗ ∈ X such

that attempting to perturb x∗ by −F (x∗) either reveals that x∗ is “stuck” against the

boundary or F (x∗) = 0 meaning x∗ is a stationary point with respect to F .

If F satisfies the following property, it is monotone:

〈F (x̂)− F (x′), x̂− x′〉 ≥ 0 ∀x̂, x′ ∈ X . (1.26)

Notice also that this is a simple generalization of convexity (i.e., replace F in Equa-

tion (1.7) with ∇f).

Therefore, to solve the convex optimization problem

min
x∈X

f(x) (1.27)

we can instead, equivalently solve the equilibrium problem that is to find x∗ such that

〈∇f(x∗), x′ − x∗〉 ≥ 0 ∀x′ ∈ X . (1.28)

Nagurney and Zhang [1996] formalize the connection between projected dynamical

systems and VIs and provide a good introduction to VI theory.

16

The motivation for considering monotone equilibrium problems rather than convex

optimization problems is that F does not have to be the gradient of any function. We

will exploit this generalization in Chapter 2, which will represent the first contribution

of this thesis.

1.3 Motivating Problems

As stated in the introduction, equilibrium problems have recently risen to the

forefront of ML research primarily due to the advent of GANs. Variants on the origi-

nal GAN formulation [40] have achieved state-of-the-art results in numerous domains

and applications. GANs have been successfully applied to image-to-image transla-

tion [124], pose transfer [72, 49], image super-resolution [65], text-to-image transla-

tion [122], image inpainting [28, 89, 118], and image anomaly detection [101]. Be-

sides image modeling tasks, GANs have also been applied to simulating high particle

physics [26], imitation learning for reinforcement learning (RL) [45], hybrid model-

based RL [10], improving variational autencoders [31], drug discovery [54], and more.

Each of these advances leverages the adversarial training paradigm presented in the

original GAN work. Therefore, any gains made in understanding adversarial training

more generally, i.e., equilibrium problems, can be shared to improve performance on

each of these tasks. We present one such contribution in Chapter 4. We also provide

tools for better visualizing adversarial training dynamics in Chapter 5 and explore a

fundamental GAN variant in Chapter 3 that illustrates the difficulty of adversarial

training.

Aside from GANs, equilibrium problems also appear in reinforcement learning

(RL), distributed network resource allocation, and market economy models. For

example, Li et al. [2018] present work on a market economy model where parameters

of the model may drift [67]. In Chapter 2, we present a framework that guarantees that

the economy will track the drifting equilibrium within a certain degree of accuracy.

17

This framework applies more generally to some algorithms in RL and some resource

allocation policies as mentioned above.

18

CHAPTER 2

ONLINE MONOTONE EQUILIBRATION

2.1 Purpose of Research

As mentioned in the introduction, online optimization is important for training

machine learning models on streaming datasets when we require the model to begin

making predictions before seeing all of the data. However, we argued that many

machine learning models are formulated as equilibrium problems. Therefore, we aim

to develop a framework for solving a specific class of equilibrium problems online.

The framework we develop, Online Monotone Equilibration (OME), subsumes the

popular Online Convex Optimization framework.

Spoiler : The study of the online setting (OME) leads to a new extragradient algorithm

with applications to Reinforcement Learning, specifically policy evaluation with linear

value functions. Our proposed framework also provides an alternative derivation of

Crossing-the-Curl (also known as Symplectic Gradient Adjustment [11]), a recently

proposed algorithm for solving GANs.

2.2 Introduction

The primary focus of this chapter is on solving monotone Variational Inequality

(VI) problems online. In order to develop an online framework suitable for evaluating

and designing algorithms, we need a way to measure performance. As stated in the

technical background of Chapter 1, the VI problem is to find x∗ such that

〈F (x∗), x′ − x∗〉 ≥ 0 ∀x′ ∈ X (2.1)

19

where F : X → Rm and X is a convex set. F is monotone if and only if it satisfies

the following property:

〈F (x̂)− F (x′), x̂− x′〉 ≥ 0 ∀x̂, x′ ∈ X . (2.2)

Notice that unlike optimization problems, the problem definition of a VI does not

readily admit a performance metric for suboptimal predictions, x. In response, VI

research has developed gap functions. A gap function is a function ψ : Rn → R ∪

{+∞} which satisfies ψ(x) ≥ 0 for all x ∈ X and ψ(x∗) = 0 if and only if x∗ solves

VI(F,X). These are more commonly referred to as merit functions or loss functions

in the optimization and machine learning literature. Numerous gap functions have

been developed satisfying the properties above [32]. Despite their wide use, we opt

for designing a new gap function for our purposes. We do this because gap functions

are approximate in the following sense. We stated in the technical background that

VI(∇f,X) is equivalent to the optimization problem minx∈X f(x). For this reason,

we desire a performance metric for VI(F,X) that gracefully falls back to f(x) when

F = ∇f and gap functions generally do not satisfy this property.

In this work, introduce a new performance metric for VIs formulated as a path

integral. We show that this formulation facilitates the design of an Online Monotone

Equilibration framework equipped with no-regret algorithms. We also illuminate

the boundaries between monotone equilibrium problems and other well known types

of problems from the game theory literature. To demonstrate the utility of this

framework for machine learning applications, we perform an online analysis of the

family of GTD algorithms [106] for reinforcement learning. In summary, our primary

contributions are

• the definition of online monotone equilibrium problems,

• the definition of our path integral regret, with accompanying linear bounds,

20

• algorithms that achieve sublinear regret,

• and examples of a variety of monotone equilibrium problems of interest.

2.3 Performance Metric

In order for a performance metric to be admissible for VI(F,X), it must equal 0

at x = x∗ and it must be greater than 0 everywhere else. We also require that the

performance metric reduces to f(x) if F = ∇f .

Consider the following path integral:

∫
z:x∗→x

〈F (z), dz〉. (2.3)

where x∗ → x denotes a straight line path from x∗ ∈ X ∗ to x ∈ X . By definition,

this path integral equals zero when x = x∗, i.e. start = end. Next consider the

following useful integral upper bound over monotone maps (see Remark 3.10 in the

work of Romano et al. [1993] for a more rigorous proof).

Lemma 1 (Path Integral Bound). The path integral over a monotone map is bounded

by its linear approximations, i.e., 〈F (a), b− a〉 ≤
∫
x:a→b〈F (x), dx〉 ≤ 〈F (b), b− a〉.

Proof. Let xi+1−xi = xn−x0
n
∀ x0, xn and recall the definition of monotonicity, 〈F (xi+1)−

F (xi), xi+1 − xi〉 ≥ 0 ∀ xi, xi+1 which implies

〈F (xi),
xn − x0

n
〉 ≤ 〈F (xi+1),

xn − x0

n
〉 (2.4)

=⇒ 〈F (xi),
xn − x0

n
〉 ≤ 〈F (xj),

xn − x0

n
〉 ∀ j ≥ i. (2.5)

Also,

21

〈F (x0), xn − x0〉 = 〈F (x0),
n−1∑
i=0

xn − x0

n
〉 (2.6)

=
n−1∑
i=0

〈F (x0),
xn − x0

n
〉 (2.7)

≤
n−1∑
i=0

〈F (xi),
xn − x0

n
〉 (2.8)

=

∫
x:x0→xn

〈F, dx〉 as n→∞, (2.9)

and vice versa for the reverse direction, which implies

〈F (x0), xn − x0〉 ≤
∫
x:x0→xn

〈F, dx〉 ≤ 〈F (xn), xn − x0〉. (2.10)

If the map is strictly monotone, then the ≤’s can be strengthened to <’s. There-

fore, for strictly and strongly monotone maps, we have

0 ≤ 〈F (x∗), x− x∗〉 <
∫
z:x∗→x

〈F (z), dz〉 (2.11)

where the first inequality follows from the definition of x∗ being a solution to VI(F,X).

Finally, notice that when F = ∇f ,

∫
z:x∗→x

〈∇f(z), dz〉 = f(x)− f(x∗) = f(x), (2.12)

and we recover f(x) via the fundamental theorem of calculus for path integrals. We

have assumed f(x∗) = 0 without loss of generality. From now on, we will refer to the

path integral
∫
z:x∗→x〈F (z), dz〉 with f(x) as we have just shown that it is equivalent to

f(x) in the case of optimization and an explicit objective function is left unspecified

in the VI problem formulation, V I(F,X).

22

This path integral, f(x), satisfies all requirements for strictly monotone maps,

however, it does not satisfy the greater than 0 requirement for all monotone maps.

Consider the following monotone (but not strictly monotone) map: F (x) = Ax where

A = −A> is skew-symmetric. Clearly, x∗ = 0 solves VI(F,Rn) as 〈F (x∗), x − x∗〉 =

0 ≥ 0 ∀x. However, the path integral is equal to zero for any x:

∫
z:x∗→x

〈F (z), dz〉 =

∫ 1

0

〈F (x∗ + (x− x∗)t), (x− x∗)〉dt (2.13)

=

∫ 1

0

〈F (xt), x〉dt =

∫ 1

0

(Axt)>xdt (2.14)

= x>A>x

∫ 1

0

tdt =
1

2
x>A>x (2.15)

=
1

4
x>(A+ A>)x = 0. (2.16)

This is because this map with skew-symmetric A represents dynamics with pure

concentric cycles, i.e., the vector field is always perpendicular to the path from the

origin. In order to build an online framework applicable to all monotone maps, we

need to modify the path integral. We will assume the map is bounded, ||F (x)|| ≤ L,

and smooth, ||F (x)−F (y)|| ≤ β||x−y||. In addition, the following discussion assumes

X is Rn, however, this is just for sake of exposition; proofs in the Appendix follow

through for any convex X . Consider the modified path integral which first integrates

to a point x̂ = x− η̂F (x) before continuing to x:

f(x) =

∫
z:x∗→x̂

〈F (z), dz〉+

∫
z:x̂→x

〈F (z), dz〉 (2.17)

≥ 〈F (x∗), x̂− x∗〉︸ ︷︷ ︸
≥0 by def of x∗

+〈F (x̂), x− x̂〉 (2.18)

≥ 0 + η̂ 〈F (x̂), F (x)〉︸ ︷︷ ︸
∃η̂>0 s.t. 〈·,·〉>0

(2.19)

> 0 for some η̂ > 0 assuming x 6= x∗, (2.20)

23

where the first bound follows from Lemma 1 and intuitively, if η̂ is small enough,

F (x) and F (x̂) will align. We give a formal proof in Appendix A.5 that considers

more general proximal updates, i.e., x̂ = prox(x). We omit a discussion of proximal

operators here to avoid complicating the exposition.

Also, note that x̂ = x∗ − η̂F (x∗) = x∗ so both path integrals vanish when x = x∗.

Finally, maps that can be written as the gradient of some function, i.e., F = ∇f , are

known as conservative maps. Conservative maps are path-independent meaning the

value of the path integral is independent of the path. That is to say that any path

integral we choose, as long as it starts at x∗ and ends at x, will recover f(x) by way

of the fundamental theorem of calculus.

Therefore, this path integral satisfies all requirements for all monotone maps as-

suming η̂ is chosen small enough (see Appendix A.5 for details).

2.3.1 Online Variational Inequality Problems

In this section, we formalize the problem of solving VI(F,X) online where F (x) =∑
t Ft(x) and each Ft is a monotone map. Let x∗ be the solution to VI(F,X). Re-

peating the same path integral loss as before:

f(x) =

∫
z:x∗→x̂

〈F (z), dz〉+

∫
z:x̂→x

〈F (z), dz〉 (2.21)

=

∫
z:x∗→x̂

〈
∑
t

Ft(z), dz〉+

∫
z:x̂→x

〈
∑
t

Ft(z), dz〉 (2.22)

=
∑
t

[∫
z:x∗→x̂

〈Ft(z), dz〉+

∫
z:x̂→x

〈Ft(z), dz〉
]

(2.23)

where x̂ = x− η̂F (x). Unfortunately, in an online / streaming setting, at time t, we

will only have seen Fτ≤t. This means we cannot construct x̂ until we see the end of

the stream. Moreover, in most online settings, we assume that we only observe Ft

evaluated at a finite number of points, i.e., x̂t and xt, after which we throw the map

24

away in order to avoid storing all maps in memory. For these reasons, we consider

the modified path integral loss for sums of maps:

f̂(x) =
∑
t

[∫
z:x∗→x̂t

〈Ft(z), dz〉+

∫
z:x̂t→x

〈Ft(z), dz〉
]

(2.24)

=
∑
t

ft(x|x∗) (2.25)

where x̂t = x − η̂Ft(x) and we introduce the abbreviation ft(x|x∗) to represent the

term above in brackets—it is the path integral loss over the map Ft starting at x∗.

This path integral loss is

• equal to 0 if x equals x∗,

• equivalent to f(x) if F = ∇f ,

• however, it may be less than 0 for some x not equal to x∗.

Although this path integral loss does not satisfy all three conditions, it is still promis-

ing for a number of reasons. First, if F = ∇f or x∗t = x∗ ∀t, then the third condition

is met. And second, in Appendix A.5.2, we derive the following lower bound for f̂(x):

f̂(x) ≥
T∑
t=1

(
||Ft(x)||p − ||Ft(x∗)||q

)
||Ft(x)||p

η̂

m
− βt

η̂2

m2
L2
t . (2.26)

By leveraging this lower bound along with additional information, we are able to

show later that minimizing the path integral, f̂(x), at a sufficient rate ensures that

the average norm over t of Ft(x) approaches the average norm of Ft(x
∗) as T →∞.

2.4 Online Monotone Equilibration

We are now ready to present a framework for Online Monotone Equilibration

(Algorithm 2: OME) that will enable us to derive upper bounds for regret in online

monotone equilibrium problems.

25

Framework 2 Online Monotone Equilibration (OME)

input: A convex set X ⊆ Rn
define: x̂t = xt − η̂zt where zt ∈ Ft(xt)
for all t = 1, 2, . . . do

predict a vector xt ∈ X
receive a vector, ẑt, from a monotone map, i.e., ẑt ∈ Ft(x̂t)
suffer ft(xt)

end for

Note that the loss at each round, ft(xt), assumes there is an oracle with knowledge

of x∗. We will show later that despite this, knowledge of x∗ is not required for learning

in the OME framework.

We repeat the Online Convex Optimization framework (OCO) here for compari-

son.

Framework Online Convex Optimization (OCO)

input: A convex set X ⊆ Rn
for all t = 1, 2, . . . do

predict a vector xt ∈ X
receive a vector, zt, from the subdifferential of a convex loss, i.e., zt ∈ ∇ft(xt)
suffer loss ft(xt)

end for

Comparing OME to OCO, we see that the major difference is that we now receive

vectors from a monotone map (at x̂t) whereas in OCO, we receive gradients of a

convex loss (at xt). In some cases, OME reduces to OCO, however, this is not always

the case, so we cannot rely on OCO theory alone to bound ft. In general, OME

represents a strict superset of OCO (see Appendix A.2.1).

Theorem 1. OCO(ft,X) is equivalent to OME(∂ft,X) and ∃Ft such that OME(Ft,X) 6∈

{∀ft OCO(ft,X)} implying OCO ⊂ OME in the strict sense.

Figure 2.1 displays an example of a function resulting from a path integral over a

monotone field F : R2 → R2; the function is non-convex.

However, if F is affine, OME is equivalent to OCO (see Appendix A.3).

26

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

x
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

y

30.000

60.000

90.000

120.000
120.000

120.000 120.000

150.000
150.000

150.000 150.000

f(x) = x2 + y2 4 [y
x (cos(x

2) 1) + x
y (cos(y

2) 1)]

60.000

70.000
80

.00
0

90
.00

0
100.000

Figure 2.1: This figure shows the contour plot for the function representing the path
integral over a 2-D monotone field, F (x, y)—observe the path integral function dis-
played in title. Notice in the inset that the function value in the interior of the line
segment is greater than the function value at either endpoint. This implies that the
function is not even quasi-convex, a weaker condition than convexity. The definition
of the field and derivation of the path integral can be found in Appendix A.2.2.

Theorem 2. If Ft(xt) = Axt + b and A is positive-definite, then there exists ft such

that OME(Ft,X) is equivalent to OCO(ft,X).

2.5 Upper Bound for Cumulative Path Integral Loss

Previously, we established lower bounds for the path integral to show it satisfied

certain properties of a loss function. Now we will establish upper bounds that we can

minimize efficiently with familiar algorithms.

The cumulative path integral loss can be upper bounded as follows:

27

f̂(x) =
T∑
t=1

[∫
x:x∗→x̂t

〈Ft(x), dx〉+

∫
x:x̂t→x

〈Ft(x), dx〉
]

(2.27)

≤
T∑
t=1

[
〈Ft(x̂t), x̂t − x∗〉+ 〈Ft(x), x− x̂t〉

]
(2.28)

=
T∑
t=1

[
〈Ft(x̂t), x− ηFt(x)− x∗〉+ η̂〈Ft(x), Ft(x)〉

]
(2.29)

=
T∑
t=1

[
〈Ft(x̂t), x− x∗〉+ η̂〈Ft(x), Ft(x)− Ft(x̂t)〉

]
(2.30)

=
T∑
t=1

[
〈ẑt, x− x∗〉+ η̂〈zt, zt − ẑt〉

]
(2.31)

where we have replaced the map evaluations with z’s to emphasize that these vectors

are potentially chosen by an adversary. Notice that we have upper bounded f̂(x) by

a sum of functions that are linear in x. Therefore, the OME problem reduces to the

Online Linear Optimization (OLO) problem and we can reuse techniques designed

for OLO. This reduction is mirrored in the OCO framework as well. Formally,

regretTA(X) =
T∑
t=1

ft(xt|x∗)− ft(x∗|x∗) =
T∑
t=1

ft(xt|x∗) (2.32)

≤
T∑
t=1

〈ẑt, xt − x∗〉+ η̂〈zt, zt − ẑt〉 (2.33)

≤
T∑
t=1

〈ẑt, xt − x∗〉+
βtL

2
t

m2
η̂2 (2.34)

≤ 1

2η
||x∗||2 + (η +

βmax

m2
η̂2)

T∑
t=1

L2
t (2.35)

≤ 5

4
BL
√

2T . (2.36)

where ||x∗|| ≤ B, ||Ft|| ≤ Lt, L
2 ≥ 1

T

∑
t L

2
t , βmax = maxt βt, η = B

L
√

2T
, and η̂ =√

η
2βmax

(see Appendix A.5 for details).

There is one other subtle problem with our path integral loss as we have defined

it. Observe that as η̂ → 0, f̂(x) approaches our original path integral loss, which we

28

argued is only applicable for strictly monotone maps. In order for this path integral

loss to be meaningful, we need to show that our algorithms are actually minimizing

this loss at a rate that is faster than η̂’s rate of decay. At the very least, any surrogate

loss that we propose must imply some sort of convergence in the offline case to be

admissible in the online setting. In Appendix A.5.5, we leverage the fact that our

lower bound derived in Equation (2.26) must, by definition, be lower than our upper

bound derived in Equation (2.34). We use this to show that an offline algorithm that

minimizes the above regret at the rate displayed in Equation (2.36) implies ||Ft(x)||

approaches ||Ft(x∗)|| on average, i.e.,

||Ft(x)|| ≤ ||Ft(x∗)||+ T−1/8
√
C (2.37)

where C = 8

√
βmaxBL3

21/4
. Note that this bound does not necessarily imply that

||Ft(xt)|| ≤ ||Ft(x∗)|| + T−1/8
√
C on average for some C. In future work, we will

explore if this is a deficiency of our path integral loss or of the analysis. However,

the main takeaway here is that the path integral loss, as defined, is meaningful in the

offline case, which satisfies a natural baseline for admissibility in the online setting.

2.5.1 Derivation of No-Regret Algorithms for OME

Due to the work previously done in OLO, part of the derivation of no-regret al-

gorithms for OME is trivial. We have shown that instantaneous regret for general

monotone maps can be bounded above by considering the constant approximation

of the map (see Equation (2.33)). Note that a constant map, Ft(xt), is always the

subgradient of some linear function, ft(x) = 〈Ft(xt), x〉. This implies that the re-

gret for general monotone maps is bounded above by considering the online linear

optimization problem with ft(x). The implication is that the online gradient descent

and even online mirror descent algorithms can be adapted from OLO with almost

no effort to minimize regret in OME while enjoying similar o(T) regret bounds (see

29

Algorithm 3 Online Extragradient Descent (OED)

input: Scalar learning rates η > 0 and η̂ > 0
x1 = 0
for all t = 1, 2, . . . do
x̂t = xt − η̂zt where zt ∈ Ft(xt)
xt+1 = xt − ηẑt where ẑt ∈ Ft(x̂t)

end for

Algorithm 4 Online Mirror Prox (OMP)

input: Link function gη : Rn → X and proximal operator proxη̂ : Rn → X
θ1 = 0
for all t = 1, 2, . . . do
xt = gη(θt)

x̂t = proxη̂(xt) = arg miny∈X

(
〈zt, y〉+ 1

η̂
D(y, xt)

)
where zt ∈ Ft(xt)

θt+1 = θt − ẑt where ẑt ∈ Ft(x̂t)
end for

Equation (2.36)). This is somewhat surprising as Theorem 1 indicates that OME cap-

tures minimizing some non-convex functions. The no-regret algorithms for OME are

given in Algorithms 3 and 4. Please see Appendix A.5 for a more thorough discussion

of proximal operators as well as the book by Shalev-Shwartz [2011] for commonly

used link functions.

These two algorithms may be recognized as online variants of the familiar Ex-

tragradient and Mirror Prox algorithms commonly seen in the VI [62] and (online)

optimization and saddle point [53] literature. Our work generalizes their use beyond

optimization and saddle point (2-D games) problems to more general monotone equi-

librium problems (e.g., N -player games). In addition, our construction of the path

integral loss gives a clear reason as to why Extragradient algorithms (as opposed

to gradient descent) are necessary for solving monotone equilibrium problems. Note

that the original path integral loss we considered leads to online gradient descent, but

30

as discussed earlier, this loss is not greater than 0 for all x 6= x∗ even in the offline

setting.

It is also worth highlighting the difference between the Extragradient we present

here and the variants seen in the literature. In particular, our variant uses a stepsize,

η̂, for computing x̂t, that grows relative to the stepsize, η, for computing xt. Other

variants in the literature use

• the same constant stepsize for both steps [25],

• average the iterates after training [39, 68] (also seen in socially-convex games [33]),

• average the maps during training [50],

• inertial proximal methods [4],

• square-summable, non-summable stepsizes [55, 56, 85, 120],

• modified EG algorithms [112],

• or complex stepsize schemes [27].

This difference in step size is crucial. Consider revisiting the problem V I(F (x) =

Ax,Rn) where A = −A> is skew-symmetric. If we use constant step sizes given a

time horizon T and η = η̂ = T−1/2, one can show that limT→∞ ||xT ||2 → 1
e
||x0||2, i.e.,

xT does not converge to the equilibrium at x∗ = 0 (see Appendix A.5.5). On the

other hand, if η = T−1/2 and η̂ = T−1/4 as we have proposed, xT does converge to x∗.

Most importantly, our online Extragradient method does not require storing or

averaging either the iterates or the maps. This allows processing data streams using

minimal memory and processor time.

2.6 Algorithmic Game Theory and Related Work

Related results in Algorithmic Game Theory (AGT) focus on maximizing welfare,

W , which is the sum of player utilities (i.e., minus the sum of player losses). In

31

order to compare to results in AGT, we define a monotone game as one in which

the map formed by concatenating the gradients of all players’ losses is monotone, i.e.

F (x) = [∇f (1)(x), . . . ,∇f (N)(x)] is monotone.

OME is a framework that examines (external) regret in monotone games. Mono-

tone games and socially-convex games are both subsets of convex games (see Theo-

rems 6 and 7 in Appendix A.8). Convex games are games in which each agent’s cost

function, f (i)(x), is convex with respect to its own strategy, x(i). Gordon et al. [2008]

studied internal and external regret for individual agents in convex games and related

these to convergence towards correlated and coarse-correlated equilibria respectively.

Note that in general, these results on equilibria do not imply results for welfare. Even-

Dar et al. [2009] examined no-regret algorithms in socially-concave games (equiva-

lently formulated as socially-convex games), and showed that each player’s average

strategy approaches that player’s strategy at the Nash equilibrium; also, each player’s

average utility approaches that player’s utility at the Nash equilibrium. Roughgar-

den [2009] developed the notion of smooth games not to be confused with the β-smooth

maps defined earlier. Smoothness relates the convergence of strategies towards Nash

equilibria to the price of anarchy (PoA), which defines the ratio of the worst-case sum

cost of a Nash equilibrium, maxx∗∈X ∗ −W (x∗), to the best-case sum cost of a player

strategy set, minx∈X −W (x). In short, smoothness relates no-regret dynamics to the

welfare of a game. The results above for convex games and socially-convex games ap-

ply for repeated play (the game is fixed), therefore, we do not consider these settings

online; the smoothness results also apply to games that may change at each step (i.e.,

online). Table 2.1 outlines the intersections between the various game types.

Additional performance gains can be obtained if we can assume each player in

the game is employing an algorithm from a given class. Syrgkanis et al. [2015] have

accelerated convergence to Nash equilibria, to zero-regret, and to optimal welfare (as-

suming the game is smooth and fixed) under this scenario. An extension of this work

32

Type / Ex. A.8.1 A.8.2 A.8.3 A.8.4 A.8.5 A.8.6 A.8.7 A.8.8 A.8.9
Smooth

√ √ √ √ √

Convex
√ √ √ √ √ √ √ √

Monotone
√ √ √ √

Socially-Convex
√ √ √ √

Table 2.1: Games may share multiple properties at once. Definitions of properties and
examples for each case (denoted by the column heading) are given in Appendix A.8.

also considers scenarios where the game is changing at each time step [71]. Specif-

ically, Foster et al. [2016] showed that approximate optimality can be guaranteed if

the game allows players to be replaced with probability p for small p. Moreover, this

is true even when the players observe only bandit feedback (as opposed to expected

costs) when comparing against a dynamic baseline. Critically, bounds on welfare are

still derived from a smoothness constraint on the game.

In contrast, OME does not require Roughgarden’s definition of smoothness and

allows the game to change with probability 1 at each step (i.e., online), however, this

framework bounds a weaker notion of regret, auto-welfare regret (see Appendix A.7),

as opposed to welfare regret.

2.7 Applications

We illustrate applications of Online Monotone Equilibration on modeling several

concave games, solving an online variational inequality problem (OVI), uncovering

insights into a saddle-point based reinforcement learning algorithm, and fitting a

generative model. Note that the majority of these equilibrium problems are actually

strongly monotone, which allows us to use the simpler path integral loss in Equa-

tion (2.11) instead of the integral defined with an intermediate x̂t for more general

monotone fields. We will denote an application as monotone, strictly, or strongly

monotone with the symbols (M), (sM), or (SM).

33

2.7.1 Concave Games

Even-Dar et al. [2009] developed the theory of socially-concave games and showed

that minor simplifications of a number of concave games are socially-concave as well.

In Appendix A.9, we show that variants of these games also satisfy monotonicity.

Specifically, we prove F is monotone for the following games:

• Linear Cournot Competition (sM) [21]—Firms compete for consumers by ad-

justing quantities of goods produced. The price of goods is set by a linear

function of the total quantity of goods in the market.

• Linear Resource Allocation (M) [52]—A network controller oversees the sharing

of a communication channel, ensuring total communication does not exceed the

network capacity. Users submit bids to the controller, which the controller uses

when deciding how to allocate capacity. User value functions are linear.

• Congestion Control Protocols (M) [33]—We consider a Tail Drop policy where

a router drops packets that exceed the network capacity.

In Appendix A.9.2, we analyze resource allocation and compare welfare with our

path integral loss. In this case, welfare is maximized when all users submit the

minimum bid amount. This result is independent of the parameters of the users’

utility functions, which from a modeling viewpoint is unsatisfying. In contrast, the

path integral loss is minimized by bids with an intuitive dependence on the utility

function parameters: 1) as the penalty for large bids grows, the optimal bid amount

decreases; 2) as the number of users increases, the optimal bid amount increases (due

to increased competition), approaching an asymptote.

2.7.2 A Machine Learning Economy (SM)

Next, we consider a cloud-based machine learning network (MLN) adopted from

the work of Nagurney and Wolf [2014]. Providers of machine learning data control

34

the quantity of data provided while network providers control the delivery price as

well as service quality. Consumers influence the network through demand functions

dictating the prices they are willing to pay for specific quantities and qualities of

services rendered. See Appendix A.10 for a more thorough description.

We define each firm’s utility function to be concave and quadratic in its strategy.

This establishes the equivalence between the equilibrium state we are searching for

and the variational inequality to be solved, VI(F,R+), where Ft returns a vector

consisting of the negative gradients of the utility functions for each firm.

To cast this VI as an online learning problem, we let the parameters of the network

change. This creates a more realistic model as a number of external factors can cause

the network to change such as complex network congestion effects, network outages,

etc. The goal then is to predict the equilibrium point of each new MLN in the face of

these possibly adversarial forces. Specifically, our experiment considers ten different

five-firm networks. At each time step, the adversary receives OED’s prediction for

the equilibrium point and returns the MLN whose equilibrium is farthest from the

predicted one.

Figure 2.2 plots average regret with respect to the time step, demonstrating that

average regret approaches zero in support of our derived sublinear bounds.

2.7.3 GTD Algorithms (M)

Reinforcement Learning (RL) is a class of learning problems in which an agent

attempts to maximize a long-term reward in an unfamiliar environment by reinforcing

rewarding behaviors. Solving this problem typically requires first learning a value

function, V π(s), which gives the long-term reward the agent is expected to receive if

employing policy π and starting from state s. Often, we learn an approximate value

function instead, V π
θ (s), parameterized by θ ∈ Rd. Approximating V π

θ (s) by observing

an exploratory policy, π′, is called off-policy policy evaluation. The gradient temporal

35

0 200 400 600 800 1000
Time Step

0

1000

2000

3000

4000

5000

OM
E

Pa
th

 In
te

gr
al

 R
eg

re
t

Demonstration of No-Regret on MLN

Figure 2.2: Demonstration of OMP on the described machine learning network. The
dotted line denotes the upper bound derived for the regret of OMP.

difference (GTD) learning algorithms form a family of algorithms for accomplishing

this task [106, 107].

Liu et al. [2015] showed that although the family of GTD algorithms are technically

not gradient algorithms with respect to their original objectives, they are gradient

algorithms with respect to the following saddle point objective, which is an example

of a two-player game:

min
θ

max
y
y>(b− Aθ)− 1

2
||y||2M (2.38)

where samples of A, b, and M are obtained from observing trajectories according to

the behavioral policy and y is an auxiliary variable used by the GTD algorithm. We

show that this game is monotone (see Appendix A.11). The GTD update rules are

given by

yt+1 = yt + ηt(b− Aθt −Myt) (2.39)

θt+1 = θt + ηt(A
>yt) (2.40)

36

where M = 1d or M is a covariance matrix. These updates are equivalent to run-

ning online gradient descent on an appropriate two-player game. Either way, M is

symmetric positive definite and the corresponding map, F , is monotone.

Although the game is monotone and not strongly-monotone, we will examine the

straight line path integral to directly reverse engineer the saddle point formulation

that formed the foundation of the first finite sample convergence results for GTD.

So far, we have considered path integrals that start at x∗. In some cases (and in

this case), it is more illuminating to consider a path integral that starts at a more

general xo and redefine ft(xt) =
∫
z:xo→xt〈Ft(z), dz〉 −

∫
z:xo→x∗〈Ft(z), dz〉. We discuss

the technical details of this change in Appendix A.6. In this more general setting,

the corresponding path integral loss that GTD bounds is

f([yt; θt]) = [y>0 (b− Aθt)− y>t (b− Aθ0)] +
1

2
||yt||2M . (2.41)

Now consider θ’s task of minimizing f([y; θ]) relative to θ0 = θ∗ with y0 fixed at

y. In this case, f([y; θ]) reduces to y>(b− Aθ) + 1
2
||y||2M . From the perspective of θ,

this is equivalent to minimizing

y>(b− Aθ)− 1

2
||y||2M . (2.42)

Similarly, consider y’s task of minimizing f([y; θ]) relative to y0 = y∗ with θ0 fixed at

θ. In this case, f([y; θ]) reduces to −y>(b − Aθ) + 1
2
||y||2M . From the perspective of

θ, this is equivalent to maximizing

y>(b− Aθ)− 1

2
||y||2M . (2.43)

Therefore, we have recovered the original saddle point problem by simply evaluat-

ing the path integral from each players’ perspective! In this way, the path integral

37

has prescribed a constructive procedure for recovering a problem formulation that

previously required a careful eye to conjure.

2.7.4 Constant-Linear GANs (M)

Generative adversarial networks formulate the training of a generative model as a

game [40]. The original formulation is a minimax game between a generator, G(z) :

z → x, and a discriminator, D(x) : x→ [0, 1],

min
G

max
D

V (D,G) = Ex∼pdata(x)

[
log(D(x))

]
+ Ez∼pz(z)

[
log(1−D(G(z)))

]
, (2.44)

where pdata(x) is the true data distribution and pz(z) is a simple (usually fixed)

distribution that is easy to draw samples from, e.g., N (0, 1).

Unfortunately, this game is not monotone in general, however, we can derive a

monotone version of the Wasserstein-type GAN [6] with online guarantees. The new

minimax objective is

min
G

max
d
V (G, d) = Ex∼pdata(x) [d

>x]− Ez∼pz(z)[d
>Gz] (2.45)

where x ∈ Rn, z ∈ Rm, d ∈ Rn, G ∈ Rn×m. We derive the map, F , associated with

this game in Appendix A.12, Equation (A.328). F is monotone for any pz(z) and

pdata(x). If G and d are regularized with α
2
|| · ||22, then F is strongly monotone with

parameter α.

In Appendix A.13, we show that for any differentiable, strictly convex-concave

minimax game, the corresponding path integral loss that Algorithms 3 and 4 bound

is

f([G; d]) = V (G, d∗)− V (G∗, d). (2.46)

38

which is a familiar Lyapunov function for the game. In the case that the minimax

game is only convex-concave, not strictly, the path integral is

f([G; d]) = V (Ĝ, d∗)− V (G∗, d̂) + V (G, d̂)− V (Ĝ, d) (2.47)

which, for small η̂, is close to the previous path integral.

2.8 Conclusion

We proposed a new framework for online learning, namely Online Monotone Equi-

libration, which enables the study of regret for online monotone equilibrium problems.

This framework generalizes the popular Online Convex Optimization framework in

a way that allows it to model regret for equilibrium problems while still retaining

the simplicity of standard no-regret algorithms from previous work. We support the

broad applicability of our new framework with connections to network congestion pro-

tocols, empirical results from a VI, analysis of an existing RL algorithm, and design

of a generative model.

In terms of technical contributions, we illuminated the boundary between OCO

and OME (e.g., affine maps), showed that OME can successfully frame some on-

line non-convex problems, defined a new, more general notion of regret, and derived

efficient, realtime algorithms with sublinear regret.

2.8.1 Up Next

In this chapter, we showed that the path integral loss can be upper bounded by

the expression below. Assuming our intermediate step to x̂ uses a small step size, η̂,

we would expect zt ∈ F (xt) and ẑt ∈ F (x̂t) to be relatively well aligned, i.e., ẑt ≈ ρzt.

This allows the following approximation (let ρ̂ = η̂(1− ρ)):

39

ft(xt) ≤ 〈ẑt, xt − x∗〉+ η̂〈zt, zt − ẑt〉 (2.48)

≈ 〈ẑt, xt − x∗〉+ ρ̂||zt||2, (2.49)

which supports the derivation of a new algorithm in the next chapter.

40

CHAPTER 3

LINEAR QUADRATIC GANS AND
CROSSING-THE-CURL

3.1 Purpose of Research

Equilibrium problems introduce additional challenges over optimization problems.

Despite these challenges, initial research on GANs began with extremely complex,

neural network models and little accompanying theory. Linear-Quadratic GANs (LQ-

GANs) were recently introduced as a testbed for better understanding GAN training

and equilibria [80]. LQ-GANs can be used to fit a multivariate Gaussian distribu-

tion to data, a fundamental task in generative modeling / density estimation. They

replace the standard neural-network generator and discriminator with a linear gener-

ator and a quadratic discriminator. This makes analysis more tractable and insights

gleaned in this setting will hopefully lead to better algorithms in the more powerful

neural-network setting. Here, we aim to better understand the LQ-GAN setting and

propose a new algorithm with provable convergence guarantees in this setting.

Spoiler : We present an intuitive derivation of Crossing-the-Curl (also known as

SGA [11]), a recently proposed algorithm for solving GANs, and prove that it can be

used to fit normal distributions to data with convergence guarantees. This algorithm

does not have a large impact on the training of neural-network based GANs, however,

our analysis reveals an additional property that does transfer to the more complex

setting. Specifically, we solve the LQ-GAN by successively increasing the complexity

of the generator and discriminator throughout training. This curriculum is mirrored

in state-of-the-art GANs [57] as well as our own work in the next chapter.

41

3.2 Introduction

When minimizing f(x) over x ∈ X , it is known that f decreases fastest if x moves

in the direction −∇f(x). In addition, any direction orthogonal to −∇f(x) will leave

f(x) unchanged. In this chapter, we show that these orthogonal directions that are

ignored by gradient descent can be critical in equilibrium problems, which are central

to game theory. If each player i in a game updates with x(i) ← x(i)−ρ∇x(i)f
(i)(x), x =

[x(1);x(2); . . .]> can follow a cyclical trajectory, similar to a person riding a merry-go-

round (see Figure 3.1). This toy scenario perfectly reflects an aspect of training for a

particular machine learning model mentioned below, and is depicted more technically

later on in Figure 3.2. To arrive at the equilibrium point, a person riding the merry-

go-round should walk perpendicularly to their direction of travel, taking them directly

to the center.

Equilibrium problems have drawn heightened attention in machine learning due to

the emergence of the Generative Adversarial Network (GAN) [40]. GANs have served

a variety of applications including generating novel images [57], simulating particle

physics [26], and imitating expert policies in reinforcement learning [45]. Despite this

plethora of successes, GAN training remains heuristic.

Deep learning has benefited from an understanding of simpler, more fundamen-

tal techniques. For example, multinomial logistic regression formulates learning a

multiclass classifier as minimizing the cross-entropy of a log-linear model where class

probabilities are recovered via a softmax. The minimization problem is convex and

is solved efficiently with guarantees using stochastic gradient descent (SGD). Un-

surprisingly, the majority of deep classifiers incorporate a softmax at the final layer,

minimize a cross-entropy loss, and train with a variant of SGD. This progression from

logistic regression to classification with deep neural nets is not mirrored in GANs. In

contrast, from their inception, GANs were architected with deep nets. Only recently

42

has the Linear-Quadratic GAN (LQ-GAN) [36, 80] been proposed as a minimal model

for understanding GANs.

Let and .

Player 1’s loss is: .

Player 2’s loss is: .

Crossing-the-Curl

Simultaneous
Gradient Descent

Example:

Figure 3.1: The goal is to find the equilibrium point (denoted by the star) of the
merry-go-round. If someone follows simultaneous gradient descent, she will ride along
in circles forever. However, if she travels perpendicularly to this direction, a.k.a.
Crosses-the-Curl, she will arrive at the equilibrium.

In this chapter, we analyze the convergence of several GAN training algorithms

in the LQ-GAN setting. We survey several candidate theories for understanding

convergence in GANs, naturally leading us to select Variational Inequalities, an in-

tuitive generalization of the widely relied-upon theories from Convex Optimization.

According to our analyses, none of the current GAN training algorithms is globally

convergent in this setting. We propose a new technique, Crossing-the-Curl, for train-

ing GANs with guaranteed convergence in the N-dimensional (N-d) LQ-GAN setting.

This work makes the following contributions (proofs can be found in Appendix B):

• The first global convergence analysis of several GAN training methods for the

N-d LQ-GAN,

• Crossing-the-Curl, the first technique with O(N/k) stochastic convergence for

the N-d LQ-GAN,

• An empirical demonstration of Crossing-the-Curl in the multivariate LQ-GAN

setting as well as some common neural network driven settings in Appendix B.16.

43

3.3 Generative Adversarial Networks

The Generative Adversarial Network (GAN) [40] formulates learning a generative

model of data as finding a Nash equilibrium of a minimax game. The generator (min

player) aims to synthesize realistic data samples by transforming vectors drawn from

a fixed source distribution, e.g., N (0, Id). The discriminator (max player) attempts

to learn a scoring function that assigns low scores to synthetic data and high scores

to samples drawn from the true dataset. The generator’s transformation function, G,

and discriminator’s scoring function, D, are typically chosen to be neural networks

parameterized by weights θ and φ respectively. The minimax objective of the original

GAN [40] is

min
θ

max
φ

{
V (θ, φ) = Ey∼p(y)[g(Dφ(y))] + Ez∼p(z)[g(−Dφ(Gθ(z))]

}
, (3.1)

where p(z) is the source distribution, p(y) is the true data distribution, and g(x) =

− log(1 + e−x).

In practice, finding the solution to Equation (3.1) consists of local updates, e.g.,

SGD, to θ and φ. This continues until 1) V has stabilized, 2) the generated data is

judged qualitatively accurate, or 3) training has de-stabilized and appears irrecover-

able, at which point, training is restarted. The difficulty of training GANs has spurred

research that includes reformulating the minimax objective [6, 73, 78, 79, 87, 114, 123],

devising training heuristics [42, 57, 98, 96], proving the existence of equilibria [8], and

conducting local stability analyses [39, 74, 75, 80].

We acknowledge here that our algorithm, Crossing-the-Curl, was independently

proposed in [11] as Symplectic Gradient Adjustment (SGA). In contrast to that work,

this chapter specifies a non-trivial application of this algorithm to LQ-GAN which

obtains guaranteed global convergence.

Recent work has studied a simplified setting, the Wasserstein LQ-GAN, where G

is a linear function, D is a quadratic function, g(x) = x, and p(z) is Gaussian [36, 80].

44

Follow-up research has shown that, in this setting, the optimal generator distribution

is a rank-k Gaussian containing the top-k principal components of the data [36].

Furthermore, it is shown that if the dimensionality of p(z) matches that of p(y),

LQ-GAN is equivalent to maximum likelihood estimation of the generator’s resulting

Gaussian distribution. To our knowledge, no GAN training algorithm with guaranteed

convergence is currently known for this setting. We revisit the LQ-GAN in more detail

in Section 3.5.

3.4 Convergence of Equilibrium Dynamics

In this section, we briefly review Variational Inequalities (VIs) and compare it to

the ODE Method leveraged in recent work [80]. See B.1.2 and B.1.1 for a discussion

of two additional theories.

3.4.1 Variational Inequalities

Variational Inequalities (VIs) are used to study equilibrium problems in a number

of domains including mechanics, traffic networks, economics, and game theory [23,

34, 43, 81]. The Variational Inequality problem, VI(F,X), is to find an x∗ such

that for all x in the feasible set X , 〈F (x∗), x − x∗〉 ≥ 0. Under mild conditions

(see Appendix B.2), x∗ constitutes a Nash equilibrium point. For readers familiar

with convex optimization, note the consistent similarity throughout this subsection

for when F = ∇f . In game theory, F often maps to the set of player gradients.

For example, the map corresponding to the minimax game in Equation (3.1) is F :

R|θ|+|φ| → [∇Vθ;−∇Vφ] ∈ R|θ|+|φ|.

A map, F , is monotone [9] if 〈F (x)−F (x′), x− x′〉 ≥ 0 for all x ∈ X and x′ ∈ X .

Alternatively, if the (possibly asymmetric) Jacobian matrix of F , J(F), is positive

semidefinite (PSD), then F is monotone [81, 100] where

45

Table 3.1: Existing convergence rates for VI algorithms in different settings.

Strongly-Monotone (Smooth/Sharp+)Monotone Pseudomonotone

Deterministic O(e−k) [19] (O(1/k) [18, 84]) O(1/
√
k) [53] O(1/

√
k) [25]

Stochastic O(1/k) [55] (O(1/k) [55, 120]) O(1/
√
k) [53] O(1/

√
k) [50]

J(F) =


∂F1

∂x1
. . . ∂F1

∂xn

...
. . .

...

∂Fn
∂x1

. . . ∂Fn
∂xn

 . (3.2)

A matrix, J , is PSD if for all x ∈ Rn, x>Jx ≥ 0, or equivalently, J is PSD if

(J+J>) � 0.

As in convex optimization, a hierarchy of monotonicity exists. F is

monotone iff ∀x ∈ X ,∀x′ ∈ X , 〈F (x)− F (x′), x− x′〉 ≥ 0, (3.3)

pseudomonotone iff ∀x ∈ X ,∀x′ ∈ X , 〈F (x′), x− x′〉 ≥ 0 =⇒ 〈F (x), x− x′〉 ≥ 0,

and quasimonotone iff ∀x ∈ X ,∀x′ ∈ X , 〈F (x′), x− x′〉 > 0 =⇒ 〈F (x), x− x′〉 ≥ 0.

(3.4)

If, in Equation (3.3), “≥” is replaced by “>”, then F is strictly-monotone; if “≥” is

replaced by “s||x − x′||2”, then F is s-strongly-monotone. If F is a gradient, then

replace monotone with convex.

Table 3.1 cites various Extragradient-type algorithms with convergence rates for

several settings. Whereas gradient descent achieves optimal convergence rates for

various convex optimization settings, Extragradient [61] achieves optimal rates for

VIs. If we can prove that a map, F̃ , associated with the game satisfies a known

monotonicity property while maintaining the same fixed point as the original game,

we need only look up the appropriate algorithm in this table to be able to solve for

the equilibrium point of the game.

46

3.4.2 The ODE Method and Hurwitz Jacobians

Nagarajan and Kolter [2017] performed a local stability analysis of the gradient

dynamics of Equation (3.1), proving that the Jacobian of F evaluated at x∗ is Hur-

witz1 [15, 16, 58], i.e., the real parts of its eigenvalues are strictly positive. Assuming

the dynamics are Lipschitz continuous, their finding means that if simultaneous gra-

dient descent using a “square-summable, not summable” step sequence enters an

ε-ball with a low enough step size, it will converge to the equilibrium. This guarantee

applies only in the deterministic setting because stochastic gradients can cause the

iterates to exit this ball and diverge. Note that while the real parts of eigenvalues

reveal exponential growth or decay of trajectories, the imaginary parts reflect any

rotation in the system2.

The Hurwitz and monotonicity properties are complementary (see B.8). To sum-

marize, Hurwitz encompasses dynamics with exponentially stable trajectories and

with arbitrary rotation, while monotonicity includes cycles (Jacobians with purely

imaginary eigenvalues) and is similar to convex optimization. Also note we are inter-

ested in these as global properties. This means that if a subset of X is not Hurwitz

(or monotone), then the map is not Hurwitz (or monotone) globally and we cannot

naturally guarantee convergence globally.

Given the preceding discussion, we believe VIs and monotone operator theory will

serve as a strong foundation for deriving fundamental convergence results for GANs;

this theory is

1. Similar to convexity suggesting its adoption by the GAN community should be

smooth,

1Our definition of Hurwitz is equivalent to the more standard definition: −J is Hurwitz if
maxi[Re(λi(−J))] < 0.

2Linearized Dynamical System: x(t) =
∑
i civie

λit; Euler’s formula: e(a+ib)t = eat(cos(bt) +
i sin(bt)).

47

2. Mature with natural mechanisms for handling constraints, subdifferentials, and

online scenarios,

3. Rich with algorithms with finite sample convergence for a hierarchy of monotone

operators.

Finally, we suggest [102] for a lucid comparison of convex optimization, game

theory, and VIs.

3.5 The Linear Quadratic GAN

In the Linear-Quadratic GAN, g(x) = x, and the generator and discriminator

are restricted to be linear and quadratic respectively: G(z) = Az + b and D(y) =

y>W2y + w>1 y. Equation (3.1) becomes

min
A,b

max
W2,w1

{
V (W2, w1, A, b) = Ey∼p(y)[D(y)]− Ez∼p(z)[D(G(z)]

}
. (3.5)

Let E[y] = µ, E[(y−µ)>(y−µ)] = Σ, E[z] = 0, and E[z2] = I. If A is constrained to be

lower triangular with positive diagonal, i.e., of Cholesky form, then (W ∗
2 , w

∗
1, A

∗, b∗) =

(0,0,Σ1/2, µ) is the unique minimax solution (see Proposition 9). The majority of this

chapter focuses on the case where p(y) and p(z) are 1-d distributions. Equation (3.5)

simplifies to

min
a>0,b

max
w2,w1

{
V (w2, w1, a, b) = w2(σ2 + µ2 − a2 − b2) + w1(µ− b)

}
. (3.6)

The map F naturally associated with this zero-sum game is constructed by concate-

nating the gradients of the two players’ losses (fG = V, fD = −V):

F =

[
∂fD
∂w2

, ∂fD
∂w1

, ∂fG
∂a
, ∂fG
∂b

]>
=

[
a2 + b2 − σ2 − µ2, b− µ, −2w2a, −2w2b− w1

]>
.

48

We say naturally because the unique fixed point of this system, F (x∗) = 0, occurs

when both generator and discriminator gradients are zero—occurring at (W ∗
2 , w

∗
1, A

∗, b∗).

3.6 Crossing-the-Curl

In this section, we will derive our proposed technique, Crossing-the-Curl, moti-

vated by an examination of the (w1, b)-subsystem of LQ-GAN, i.e., (w2, a) fixed at

(0, a0) for any a0. The results discussed here hold for the N-dimensional case as well.

The map associated with this subsystem is plotted in Figure 3.2 and formally stated

in Equation (3.7).

Fw1,b = [b− µ,−w1]> (3.7)

Jw1,b =

[
0 1
−1 0

]
xk = [w1,k, bk]

>

xk+1 = xk − ρkFw1,b(xk) (3.8)

Figure 3.2: Vector field plot of Fw1,b for µ = 0 with Extragradient, xegk+1 (see up-
dates (3.9) and (3.10)), simultaneous gradient descent, xk+1, and Crossing-the-Curl,
xcck+1, updates overlayed on top.

The Jacobian of Fw1,b is not Hurwitz, and simultaneous gradient descent, defined

in Equation (3.8), will diverge for this problem (see B.5). However, Fw1,b is monotone

(J +J> = 0) and 1−Lipschitz in the sense that ||Fw1,b(x)−Fw1,b(x′)||2 ≤ 1||x−x′||2.

Table 3.1 offers an Extragradient method (see Figure 3.2) with an O(1/k) convergence

rate, which is optimal for worst case monotone maps.

Nevertheless, an algorithm that travels perpendicularly to the vector field will

proceed directly to the equilibrium. In this example, the intuition is to travel in the

direction that is perpendicular to both F and the axis of rotation. For a 2-D system,

the axis of rotation can be obtained by taking the curl of the vector field. To derive

49

a direction perpendicular to both F and the axis of rotation, we can take their cross

product:

Fcc = −1

2
(

curl︷ ︸︸ ︷
∇× F)× F = −1

2
{∇F (v · F)− (v · ∇)F}

∣∣∣
v=F

= −
(J − J>

2

)
F =

 w1

b− µ


where∇F is Feynman notation for the gradient with respect to F only and |v=F means

evaluate the expression at v = F . The − 1/2 factor ensures the algorithm moves toward

regions of “tighter cycles” and simplifies notation. It may be sensible to perform some

linear combination of simultaneous gradient descent and Crossing-the-Curl, so we will

refer to (I − η(J − J>))F as Fηcc.

Note that the fixed point of Fcc remains the same as the original field F . Further-

more, the reader may recognize Fcc as the gradient of the function 1
2
(w2

1 + (b− µ)2),

which is strongly convex, allowing an O(e−k) convergence rate in the deterministic

setting. Fcc is derived from intuition in 2-D, however, we discuss reasons in the next

subsection for why this approach generalizes to higher dimensions.

3.6.1 Discussion and Relation to Other Methods

For the (w1, b)-subsystem, Crossing-the-Curl is equivalent to two other methods:

the consensus algorithm [74] and a Taylor series approximation to Extragradient [61].

Note that if we differentiate the path integral loss highlighted in Section 2.8.1 of the

previous chapter, the first term in the path integral loss recovers Extragradient while

the second term recovers the consensus algorithm.

These equivalences occur because the Jacobian is skew-symmetric (J> = −J) for

the (w1, b)-subsystem. In the more general case, where J is not necessarily skew-

symmetric, Crossing-the-Curl represents a combination of the two techniques. Ex-

tragradient (EG) is key to solving VIs and the consensus algorithm has delivered

50

x̂k+1 = xk − η̂F (xk) (3.9)

xk+1 = xk − ηF (x̂k+1) (3.10)

= xk − η (I − η̂J(xk))F (xk)︸ ︷︷ ︸
Feg

(3.11)

+O(ηη̂2)

xk+1 = xk − η(F (xk) + η̂∇||F ||2)

= xk − η (I + η̂J>(xk))F (xk)︸ ︷︷ ︸
Fcon

(3.12)

Figure 3.3: A Taylor series expansion of Extragradient (3.11) and the consensus
algorithm (3.12).

impressive results for GANs, so this is promising for Fcc. To our knowledge, Feg is

novel and has not appeared in the Variational Inequality literature.

Crossing-the-Curl stands out in many ways though. Observe that in higher dimen-

sions, the subspace orthogonal to F is (n − 1) dimensional, which means (J>−J)F

is no longer the unique direction orthogonal to F . However, every matrix can be

decomposed into a symmetric part with real eigenvalues, 1/2(J + J>), and a skew-

symmetric part with purely imaginary eigenvalues, 1/2(J − J>). Notice that for an

optimization problem, J−J>=H−H>=0 where H is the Hessian.3 It is the imaginary

eigenvalues, i.e., rotation, that set equilibrium problems apart from optimization and

necessitate the development of new algorithms like Extragradient. It is reassuring

that this matrix appears explicitly in Fcc. In addition, Fcc reduces to gradient de-

scent when applied to an optimization problem making the map agnostic to the type

of problem at hand: optimization or equilibration.

The curl also shares close relation to the gradient. The gradient is ∇ applied to a

scalar function and the curl is ∇ crossed with a vector function. Furthermore, under

mild conditions, every vector field, F : R3 → R3, admits a Helmholdtz decomposition:

F = −∇f +∇×G where f is a scalar function and G is a vector function suggesting

the gradient and curl are both fundamental components.

3Assuming the objective function has continuous second partial derivatives—see Schwarz’s theo-
rem.

51

Consider the perspective of Fcc as preconditioning F by a skew-symmetric matrix.

Preconditioning with a positive definite matrix dates back to Newton’s method and

has reappeared in machine learning with natural gradient [5]. Dafermos [1983] con-

sidered asymmetric positive definite preconditioning matrices for VIs. Thomas [2014]

extended the analysis of natural gradient to PSD matrices. We are not aware of any

work using skew-symmetric matrices for preconditioning. The scalar x>Ax ≡ 0 for

any skew-symmetric matrix A, so calling (J> − J) a PSD matrix is not adequately

descriptive.

Note that Crossing-the-Curl does not always improve convergence; this technique

can transform a strongly-monotone field into a saddle and an unstable fixed point

(non-monotone) into a strongly-monotone field (see B.9 for examples), so this tech-

nique should generally be used with caution.

Lastly, Crossing-the-Curl is inexpensive to compute. The Jacobian-vector prod-

uct, JF , can be approximated accurately and efficiently with finite differences. Like-

wise, J>F can be computed efficiently with double backprop [30] by taking the gradi-

ent of 1/2||F ||2. In total, three backprops are required, one for F (xk), one for F (x̂k+1),

and one for 1/2||F (xk)||2.

In our analysis, we also consider the gradient regularization proposed in [80], Freg,

the Unrolled GAN proposed in [76], Funr, alternating gradient descent, Falt, as well

as any linear combination of F , JF , and J>F , deemed Flin, which forms a family of

maps that includes Feg, Fcon, and Fcc:

Freg =

[
FD; FG + η∇G||FD||2

]>
, Flin = (ρI + βJ> − γJ)F.

Keep in mind that we are proposing Flin as a generalization of Crossing-the-Curl.

We state our main results here for the (w1, b)-subsystem.

Proposition 1. For any α, Fw1,b
lin with at least one of β and γ positive and both non-

negative is strongly monotone. Also, its Jacobian is Hurwitz. See Proposition 13.

52

Corollary 1. Fw1,b
cc , Fw1,b

ηcc , Fw1,b
eg , and Fw1,b

con with η > 0 are strongly-monotone with

Hurwitz Jacobians. See Proposition 1.

Proposition 2. Fw1,b
alt , Fw1,b

unr , Fw1,b, and Fw1,b
reg with any η are monotone, but not

strictly monotone. Of these maps, only Fw1,b
reg ’s Jacobian is Hurwitz. See Proposi-

tions 12 and 13.

3.7 Analysis of the Full System

Here, we analyze the maps for each of the algorithms discussed above, testing

for quasimonotonicity (the weakest monotone property) and whether the Jacobian is

Hurwitz for the full LQ-GAN system.

Proving quasiconvexity of 4th degree polynomials has been proven strongly NP-

Hard [3]. This implies that proving monotonicity of 3rd degree maps is strongly

NP-Hard. The original F contains quadratic terms suggesting it may welcome a

quasimonotone analysis, however, the remaining maps all contain 3rd degree terms.

Unsurprisingly, analyzing quasimonotonicity for Flin represents the most involved of

our proofs given in Appendix B.11.

The definition stated in (3.4) suggests checking the truth of an expression de-

pending on four separate variables: x, x′, y, y′. While we used this definition for

certain cases, the following alternate requirements proposed in the work of Crouzeix

and Ferland [1996] made the complete analysis of the system tractable. We restate

simplified versions of the requirements we leveraged for convenience.

Consider the following conditions:

(A) For all x ∈ X and v ∈ Rn such that v>F (x) = 0 we have v>J(x)v ≥ 0.

(B) For all x ∈ X and x∗ ∈ X such that F (x∗) = 0, we have that F (x)>(x−x∗) ≥ 0.

Theorem 3 ([22], Theorem 3). Let F : X → Rn be differentiable on the open convex

set X ⊂ Rn.

53

1. F is quasimonotone on X only if (A) holds, i.e. (A) is necessary but not

sufficient.

2. F is pseudomonotone on X if (A) and (B) hold, i.e. (A) and (B) are sufficient

but not necessary.

Condition (A) says that for a map to be quasimonotone, the map must be mono-

tone along directions orthogonal to the vector field. In addition to this, condition (B)

says that for a map to be pseudomonotone, the dynamics, −F , must not be leading

away from the equilibrium anywhere.

Equipped with these definitions, we can conclude the following:

Proposition 3. None of the maps, including Flin with any setting of coefficients, is

quasimonotone for the full LQ-GAN. See Corollary 5 and Propositions 15 through 17.

Proposition 4. None of the maps, including Flin with any setting of coefficients, has

a Hurwitz Jacobian for the full LQ-GAN. See Propositions 27 and 15 through 17.

3.7.1 Learning the Variance: The (w2, a)-Subsystem

Results from the previous section suggest that we cannot solve the full LQ-GAN,

but given that we can solve the (w1, b)-subsystem, we shift focus to the (w2, a)-

subsystem assuming the mean has already been learned exactly, i.e., b = µ. We will

revisit this assumption later.

We can conclude the following for the (w2, a)-subsystem:

Proposition 5. Fw2,a, Fw2,a
reg , Fw2,a

unr , Fw2,a
alt , and Fw2,a

con are not quasimonotone. Also,

their Jacobians are not Hurwitz. See Propositions 14 through 19.

Proposition 6. Fw2,a
eg and Fw2,a

cc are pseudomonotone which implies an O(1/
√
k)

stochastic convergence rate. See Propositions 21 and 24. Their Jacobians are not

Hurwitz. See Proposition 27.

54

Proposition 7. No monotone Fw2,a
lin exists. See Proposition 26.

These results are not purely theoretical. Figure 3.4 displays trajectories resulting

from each of the maps.

Fw2,a
eg =

[
4w2a

2

2a(a2 − σ2)− 4w2
2a

]
(3.13)

↓ ∗1/4a2

Fw2,a
eg′ =

[
w2

a2−σ2−2w2
2

2a

]
; (3.14)

Fw2,a
cc =

[
4w2a

2

2a(a2 − σ2)

]
(3.15)

↓ ∗1/4a2

Fw2,a
cc′ =

[
w2

a2−σ2

2a

]
(3.16)

Figure 3.4: (Left) Comparison of trajectories on the (w2, a)-subsystem.4 The vector
field plotted is for the original system, ẋ = −Fw2,a(x). Observe how Fw2,a

cc takes a
more direct route to the equilibrium. (Right) Maps derived after rescaling Fw2,a

cc and
Fw2,a
eg .

We can further improve upon Fw2,a
eg and Fw2,a

cc by rescaling with 1/4a2: (3.13)→(3.14)

and (3.15)→(3.16) respectively. This results in strongly-monotone and strongly-

convex systems respectively, improving the stochastic convergence rate to O(1/k).

In deriving these results, we assumed the mean was given. We can relax this as-

sumption and analyze the (w2, a)-subsystem under the assumption that the mean is

“close enough”. Using a Hoeffding bound, we find that k >
(

yhi−ylow
−|µ|+
√
µ2+dσ2

)2
log[

√
2

δ1/2
]

iterations of Fw1,b
cc are required to achieve a 1 − δ probability of the mean being ac-

curate enough to ensure the (w2, a)-subsystem is strongly-monotone. Note that this

approach of first learning the mean, then the variance retains the overall O(1/k)

stochastic rate. We summarize the main points here.

4ODEs were simulated using Heun-Euler with Phase Space Error Control [44].

55

Claim 1. A nonlinear scaling of Fw2,a
eg and Fw2,a

cc results in strictly monotone and

1/2-strongly monotone subsystems respectively. See Proposition 29.

Claim 2. If the mean is first well approximated, i.e., b2 ≤ µ2+σ2, then Fw2,a
cc′ remains

1) 1/2-strongly-monotone if the (w1, b)-subsystem is “shut off” or 2) strictly-monotone

if the (w1, b)-subsystem is re-weighted with a high coefficient. See Propositions 30

and 31.

Proposition 8. FW2,A
eg and FW2,A

cc are not quasimonotone for the 2-D LQ-GAN sys-

tem (with and without (AA>)−1 scaling). See Proposition 32.

Several takeaways emerge. One is that the stability of the system is highly de-

pendent on the mean first being learned. In other words, batch norm is required for

the monotonicity of LQ-GAN, so it is not surprising that GANs typically fail without

these specialized layers.

Second is that stability is achieved by first learning a simple subsystem, (w1, b),

then learning the more complex, (w2, a)-subsystem. This theoretically confirms the

intuition behind progressive training of GANs [57], which have generated the highest

quality images to date. Note that the work by Karras et al. [2017] was inspired by

ideas described in Chapter 4 of this thesis.

Thirdly, because J cc
′

w2,a
is symmetric (and � 0), we can integrate F cc′

w2,a
to discover

the convex function it is implicitly descending via gradient descent: f cc
′

w2,a
= 1/2[(a2−

σ2) − σ2 log(a2/σ2)]. Compare this to KL-divergence: KL(σ||a) = 1/2[(σ2/a2) +

log(a2/σ2) − 1]. In contrast to KL, f cc
′

w2,a
is convex in a and may be a desirable

alternative due to less extreme gradients near a = 0.

3.7.2 Learning the Covariance: The (W2, A)-Off-Diagonal Subsystem

After learning both the mean and variance of each dimension, the covariance

of separate dimensions can be learned. Proposition B.14 in the Appendix states

that the subsystem relevant to learning each row of A is strictly monotone when

56

Table 3.2: For convenience, we summarize many of our theoretical results in this
table. Legend: M=Monotone, C=Convex, H=Hurwitz, S=Strongly, s=Strictly,
P=Pseudo, Q=Quasi, /=Not.

Subsystem F Falt Funr Freg Fcon Feg Fcc Feg′ Fcc′

(w1, b) M,��H M,��H M,��H M,H SC,H SC,H SC,H NA NA
(w2, a) �

��QM,��H �
��QM,��H �

��QM,��H �
��QM,��H �

��QM,��H PM,��H PM,��H sM,H SC,H

all other rows are held fixed. In fact, the maps for these subsystems are affine and

skew-symmetric just like the (w1, b)-subsystem. This implies that Crossing-the-Curl

applied successively to each row of A can solve for A∗; pseudocode is presented in

Algorithm 5. Note that this procedure is reminiscent of the Cholesky-Banachiewicz

algorithm which computes A row by row, beginning with the first row. The resulting

algorithm is O(N/k).

57

Algorithm 5 Crossing-the-Curl for LQ-GAN

Input: Sampling distribution p(y), max iterations K, batch size B, lower bound on
variance σmin

(1) Learn Mean
µ0 = [0, . . . , 0]>

for all k = 1, 2, . . . , K do
µ̂ = 1

B

∑B
s=1(ys ∼ p(y))

µk = k
k+1

µk−1 + 1
k+1

µ̂, i.e., µk = µk−1 − ρkF b
cc with step size ρk = 1

k+1

end for
(2) Learn Variance
σ0 = [1, . . . , 1]>

for all k = 1, 2, . . . , K do
σ̂2 = 1

B

∑B
s=1[(ys ∼ p(y))− µK]2

F a
cc′ = (σ2

k − σ̂2)/(2σk)
σk = clip(σk−1 − 1

k+1
F a
cc′ , σmin,∞)

end for
(3) Learn Covariance
A0 = LT (IN), i.e., lower triangular part of identity matrix
A0,11 = σK,1
for all d = 2, . . . , N do

for all k = 1, 2, . . . , K do
ys ∼ p(y), s = 1, . . . , B
Σ̂ = 1

B

∑B
s=1(ys − µK)>(ys − µK)

FWi<d
= 2
(∑

j≤iAk−1,ijAk−1,dj − Σ̂id

)
FA
cc = A>k−1,:d−1FWi<d

where Ak−1,:d−1 refers to the top left d− 1× d− 1
block of Ak−1

Âk,d: = Ak−1,d: − 1
k+1

FA
cc where Ak−1,d: refers to the dth row of Ak

excluding the diagonal
if
∑

j Â
2
k,dj > σ2

K,d − σ2
min then

Âk,dj = Âk,dj · σK,d/
√∑

j Â
2
k,dj + σ2

min

end if
FWi<d

= 2
(∑

j≤iAk−1,ijÂk,dj − Σ̂id

)
FA
cc = A>k−1,:d−1FWi<d

where Ak−1,:d−1 refers to the top left d− 1× d− 1
block of Ak−1

Ak,d: = Ak−1,d: − 1
k+1

FA
cc where Ak−1,d: refers to the dth row of Ak

excluding the diagonal
if
∑

j A
2
k,dj > σ2

K,d − σ2
min then

Ak,dj = Ak,dj · σK,d/
√∑

j A
2
k,dj + σ2

min

end if
end for
AK,dd =

√
σ2
K,d −

∑
j A

2
K,dj

end for

58

3.8 Experiments

Our theoretical analysis proves convergence of the stagewise procedure using

Crossing-the-Curl for the N-d LQGAN. Experiments solving the (w2, a)-subsystem

alone for randomly generated E[(y − µ)2] = σ2 support the analysis of Subsec-

tion 3.7.1—see the first row of Table 3.3. Not listed in the first row of the table

are Fcc′ and Feg′ which converge in 32 and 33 steps on average respectively with a

constant step size of 0.1. Our novel maps, Fcc and Feg, converge in a quarter of the

iterations of the next best method (Freg), and Fcc′ and Feg′ in nearly a quarter of their

parent counterparts. These experiments used analytical results of the expectations,

i.e., the systems are deterministic.

Table 3.3: Each entry in the table reports two quanities. First is the average number
of steps, k, required for each dynamical system, e.g., ẋ = −F (x), to reduce ||xk −
x∗||/||x0−x∗|| to 0.001 for the (W2, A)-subsystem. The second, in parentheses, reports
the fraction of trials that the algorithm met this threshold in under 100,000 iterations.
Dim denotes the dimensionality of x ∼ p(x) for the LQ-GAN being trained (with
|θ| + |φ| in parentheses). For each problem, x0 is randomly initialized 10 times for
each of ten randomly initialized Σ’s, i.e., 100 trials per cell. Extragradient (EG) is
run with a fixed step size. All other ODEs are solved via Heun-Euler with Phase
Space Error Control [44].

Dim F EG Fcon Freg Feg Fcc
1 (2) 105 (0) 83315 (0.4) 6354 (0.94) 395 (1) 116 (1) 110 (1)

2 (6) 105 (0) 98244 (0.05) 33583 (0.68) 2595 (1) 1321 (1) 1441 (1)

4 (10) 105 (0) 99499 (0.01) 77589 (0.23) 33505 (0.7) 34929 (0.67) 34888 (0.68)

The second and third rows of the table reveal that convergence slows considerably

for higher dimensions. However, the stagewise procedure discussed in Subsection 3.7.2

is guaranteed to converge. This procedure solves the 4-d deterministic LQ-GAN in

20549 iterations with a 0.88 success rate. For the 4-d stochastic LQ-GAN using

single-sample minibatch estimates, this procedure achieves ||xk−x∗||/||x0−x∗|| < 0.1

in 100,000 iterations with a 0.75 success rate.

59

3.9 Conclusion

In this chapter, we performed the first global convergence analysis for a variety

of GAN training algorithms. According to Variational Inequality theory, none of

the current GAN training algorithms is globally convergent for the LQ-GAN. We

proposed an intuitive technique, Crossing-the-Curl, with the first global convergence

guarantees for any generative adversarial network. As a by-product of our analysis, we

extract high-level explanations for why the use of batch norm and progressive training

schedules for GANs are critical to training. In experiments with the multivariate LQ-

GAN, Crossing-the-Curl achieves performance superior to any existing GAN training

algorithm.

3.9.1 Up Next

In this chapter, we showed that by applying Crossing-the-Curl first to the problem

of learning the mean of a distribution, then to learning the covariance in successively

higher dimensional equilibrium problems, we were able to ensure global convergence.

This concept of training the GAN using discriminators of varying and increasing levels

of complexity supports our discussion in the next chapter.

60

CHAPTER 4

GENERATIVE MULTI-ADVERSARIAL NETWORKS

4.1 Purpose of Research

GANs are theoretically formulated as a search for the minimax optimal generator,

the generator that achieves the minimal loss with respect to the best discriminator.

In practice, GAN training typically consists of optimizing a single generator and

a single discriminator simultaneously. This means that the discriminator is nearly

always suboptimal. Furthermore, once training has reached an equilibrium, we can

only trust that the generator achieves the minimal loss with respect to the best

discriminator in a local neighborhood. Unfortunately, the most obvious alternative,

training the discriminator to convergence before each generator update, results in a

discriminator that provides very little training signal to the generator. We would like

a tractable technique for obtaining a generator that is closer to minimax optimal.

In search of this goal, we pit the single generator against several discriminators.

Intuitively, if the generator “fools” a diverse set of discriminators, we can be more

confident that the generator is minimax optimal. We explore various ways of present-

ing the discriminator training signal to the generator and find that simply averaging

the discriminator training signals leads to many performance benefits.

Spoiler : We present a simple extension to GANs that incorporates multiple dis-

criminators. We show that introducing more discriminators into the standard GAN

framework reduces variance of the minimax objective, improves the quality of the

resulting samples that are generated, and accelerates convergence of the GAN to a

steady-state minimax loss.

61

4.2 Introduction

In this chapter, we theoretically and empirically justify generalizing the GAN

framework to multiple discriminators. We review GANs and summarize our extension

in Section 4.3. In Section 4.4, we present our N -discriminator extension to the GAN

framework (Generative Multi-Adversarial Networks). Section 4.4.2 explains how this

extension makes training with the untampered minimax objective tractable. In Sec-

tion 4.5, we define an intuitive metric (GMAM) to quantify GMAN performance and

evaluate our framework on a variety of image generation tasks. Section 4.6 concludes

with a summary of our contributions and directions for future research.

Contributions—To summarize, our main contributions are: i) a multi-discriminator

GAN framework, GMAN, that allows training with the original, untampered minimax

objective; ii) a generative multi-adversarial metric (GMAM) to perform pairwise eval-

uation of separately trained frameworks; iii) a particular instance of GMAN, GMAN∗,

that allows the generator to automatically regulate training and reach higher perfor-

mance (as measured by GMAM) in a fraction of the training time required for the

standard GAN model.

4.3 Generative Adversarial Networks to GMAN

The original formulation of a GAN is a minimax game between a generator, Gθ(z) :

z → x, and a discriminator, Dω(x) : x→ [0, 1],

min
G

max
D∈D

V (D,G) = Ex∼pdata(x)

[
log(D(x))

]
+ Ez∼pz(z)

[
log(1−D(G(z)))

]
, (4.1)

where pdata(x) is the true data distribution and pz(z) is a simple (usually fixed) dis-

tribution that is easy to draw samples from (e.g., N (0, 1)). We differentiate between

the function space of discriminators, D, and elements of this space, D. Let pG(x) be

the distribution induced by the generator, Gθ(z). We assume D,G to be deep neural

networks as is typically the case.

62

In their original work, Goodfellow et al. [2014] proved that given sufficient network

capacities and an oracle providing the optimal discriminator, D∗ = arg maxD V (D,G),

gradient descent on pG(x) will recover the desired globally optimal solution, pG(x) =

pdata(x), so that the generator distribution exactly matches the data distribution. In

practice, they replaced the second term, log(1 − D(G(z))), with − log(D(G(z))) to

enhance gradient signals at the start of the game; note this is no longer a zero-sum

game. Part of their convergence and optimality proof involves using the oracle, D∗,

to reduce the minimax game to a minimization over G only:

min
G
V (D∗, G) = min

G

{
C(G) = − log(4) + 2 · JSD(pdata||pG)

}
(4.2)

where JSD denotes Jensen-Shannon divergence. Minimizing C(G) necessarily mini-

mizes JSD, however, we rarely know D∗ and so we instead minimize V (D,G), which

is only a lower bound.

4.3.1 GMAN: A Multi-adversarial Extension

We propose introducing multiple discriminators, which brings with it a number of

design possibilities. We explore approaches ranging between two extremes: 1) a more

discriminating D (better approximating maxD V (D,G)) and 2) a D better matched

to the generator’s capabilities. Approach 1 failed to produce good results—it has

been relegated to the appendix. We describe approach 2 below. Mathematically,

we reformulate G’s objective as minG maxF (V (D1, G), . . . , V (DN , G)) for different

choices of F (see Figure 4.1). Each Di is still expected to independently maximize

its own V (Di, G), i.e. there is no explicit cooperation. We sometimes abbreviate

V (Di, G) with Vi and F (V1, . . . , VN) with FG(Vi).

63

G

DND2D1

V(DN,G)V(D2,G)V(D1,G)

F(·)

Figure 4.1: (GMAN) The generator trains using feedback aggregated over multiple
discriminators. If F ≡ max, G trains against the best discriminator. If F ≡ mean, G
trains against an ensemble. We explore other alternatives to F in Subsections 4.4.1
and 4.4.3 that improve on both these options.

4.4 A Forgiving Teacher

This section focuses on the perspective that asks the question, “Is maxD V (D,G)

too harsh a critic?”

4.4.1 Soft-Discriminator

In practice, training against a far superior discriminator can impede the genera-

tor’s learning. This is because the generator is unlikely to generate any samples con-

sidered “realistic” by the discriminator’s standards, and so the generator will receive

uniformly negative feedback. This is problematic because the information contained

in the gradient derived from negative feedback only dictates where to drive down

pG(x), not specifically where to increase pG(x). Furthermore, driving down pG(x)

necessarily increases pG(x) in other regions of X (to maintain
∫
X pG(x) = 1) which

may or may not contain samples from the true dataset (whack-a-mole dilemma). In

contrast, a generator is more likely to see positive feedback against a more lenient

discriminator, which may better guide a generator towards amassing pG(x) in approx-

imately correct regions of X .

For this reason, we explore a variety of functions that allow us to soften the max

operator. We choose to focus on soft versions of the three classical Pythagorean means

parameterized by λ where λ = 0 corresponds to the mean and the max is recovered

64

as λ→∞:

AMsoft(V, λ) =
N∑
i

wiVi (4.3)

GMsoft(V, λ) = − exp
(N∑

i

wi log(−Vi)
)

(4.4)

HMsoft(V, λ) =
(N∑

i

wiV
−1
i

)−1

(4.5)

where wi = eλVi/Σje
λVj with λ ≥ 0, Vi < 0. Using a softmax also has the well known

advantage of being differentiable (as opposed to subdifferentiable for max). Note

that we only require continuity to guarantee that computing the softmax is actually

equivalent to computing V (D̃, G) where D̃ is some convex combination of Di (see

Appendix C.2).

4.4.2 Using the Original Minimax Objective

To illustrate the effect the softmax has on training, observe that the component

of AMsoft(V, 0) relevant to generator training can be rewritten as

1

N

N∑
i

Ex∼pG(x)

[
log(1−Di(x))

]
=

1

N
Ex∼pG(x)

[
log(z)

]
. (4.6)

where z =
∏N

i (1−Di(x)). Note that the generator gradient, |∂ log(z)
∂z
|, is minimized at

z = 1 over z ∈ (0, 1]1. From this form, it is clear that z = 1 if and only if Di = 0 ∀i,

so G only receives a vanishing gradient if all Di agree that the sample is fake; this

is especially unlikely for large N . In other words, G only needs to fool a single

Di to receive constructive feedback. This result allows the generator to successfully

minimize the original generator objective, log(1−D). This is in contrast to the more

popular − log(D) introduced to artificially enhance gradients at the start of training.

1∇GV = −
∑
i
Di

z
∂Di

∂G

∏
j 6=i(1−Dj) = − 1

z
∂Dk

∂G for Dk = 1, D6=k = 0. Our argument ignores ∂Dk

∂G .

65

At the beginning of training, when maxDi V (Di, G) is likely too harsh a critic for

the generator, we can set λ closer to zero to use the mean, increasing the odds of

providing constructive feedback to the generator. In addition, the discriminators have

the added benefit of functioning as an ensemble, reducing the variance of the feedback

presented to the generator, which is especially important when the discriminators are

far from optimal and are still learning a reasonable decision boundary. As training

progresses and the discriminators improve, we can increase λ to become more critical

of the generator for more refined training.

4.4.3 Automating Regulation

The problem of keeping the discriminator and generator in balance has been widely

recognized in previous work with GANs. Issues with unstable dynamics, oscillatory

behavior, and generator collapse are not uncommon. In addition, the discriminator

is often times able to achieve a high degree of classification accuracy (producing a

single scalar) before the generator has made sufficient progress on the arguably more

difficult generative task (producing a high dimensional sample). Salimans et al. [2016]

suggested label smoothing to reduce the vulnerability of the generator to a relatively

superior discriminator. Here, we explore an approach that enables the generator

to automatically temper the performance of the discriminator when necessary, but

still encourages the generator to challenge itself against more accurate adversaries.

Specifically, we augment the generator objective:

min
G,λ∈(0,λmax)

FG(Vi)− f(λ) (4.7)

where f(λ) is monotonically increasing in λ which appears in the softmax equations,

(4.3)—(4.5). In experiments, we simply set f(λ) = cλ with c a constant (e.g., 0.001).

The generator is incentivized to increase λ to reduce its objective at the expense of

competing against the best available adversary D∗ (see Appendix C.3).

66

4.5 Evaluation

Evaluating GANs is still an open problem. In their original work, Goodfellow

et al. [2014] report log likelihood estimates from Gaussian Parzen windows, which they

admit, has high variance and is known not to perform well in high dimensions. Theis

et al. [2016] recommend avoiding Parzen windows and argue that generative models

should be evaluated with respect to their intended application. Salimans et al. [2016]

suggest an Inception score, however, it assumes labels exist for the dataset. Recently,

Im et al. [2016] introduced the Generative Adversarial Metric (GAM) for making pair-

wise comparisons between independently trained GAN models. The core idea behind

their approach is given two generator, discriminator pairs (G1, D1) and (G2, D2), we

should be able to learn their relative performance by judging each generator under

the opponent’s discriminator.

4.5.1 Metric

In GMAN, the opponent may have multiple discriminators, which makes it un-

clear how to perform the swaps needed for GAM. We introduce a variant of GAM,

the generative multi-adversarial metric (GMAM), that is amenable to training with

multiple discriminators,

GMAM = log
(F a

Gb
(V a

i)

F a
Ga

(V a
i)

/F b
Ga

(V b
i)

F b
Gb

(V b
i)

)
. (4.8)

where a and b refer to the two GMAN variants (see Section 4.3.1 for notation FG(Vi)).

The idea here is similar. If G2 performs better than G1 with respect to both D1 and

D2, then GMAM>0 (remember V≤0 always). If G1 performs better in both cases,

GMAM<0, otherwise, the result is indeterminate.

67

4.5.2 Experiments

We evaluate the aforementioned variations of GMAN on a variety of image gen-

eration tasks: MNIST [64], CIFAR-10 [63] and CelebA [69]. We focus on rates of

convergence to steady state along with quality of the steady state generator accord-

ing to the GMAM metric. To summarize, loosely in order of increasing discriminator

leniency, we compare

• F-boost: A single AdaBoost.OL-boosted discriminator (see Appendix C.4).

• P-boost: Di is trained according to AdaBoost.OL. A max over the weak learner

losses is presented to the generator instead of the boosted prediction (see Ap-

pendix C.4).

• GMAN-max: max{Vi} is presented to the generator.

• GAN: Standard GAN with a single discriminator (see Appendix C.0.2).

• mod-GAN: GAN with modified objective (generator minimizes − log(D(G(z))).

• GMAN-λ: GMAN with F ≡arithmetic softmax with parameter λ.

• GMAN∗: The arithmetic softmax is controlled by the generator through λ.

All generator and discriminator models are deep (de)convolutional networks [92],

and aside from the boosted variants, all are trained with Adam [59] and batch nor-

malization [48]. Discriminators convert the real-valued outputs of their networks to

probabilities with squashed -sigmoids to prevent saturating logarithms in the minimax

objective (ε+ 1−2ε
1+e−z

). See Appendix C.5 for further details. We test GMAN systems

with N = {2, 5} discriminators. We maintain discriminator diversity by varying

dropout probability and network depth.

Figure 4.2 reveals that increasing the number of discriminators reduces the num-

ber of iterations to steady-state by 2x on MNIST; increasing N (the size of the

68

discriminator ensemble) also has the added benefit of reducing the variance the mini-

max objective over runs. Figure 4.3 displays the variance of the same objective over a

sliding time window, reaffirming GMAN’s acceleration to steady-state. Figure 4.4 cor-

Figure 4.2: Generator objective, F ,
averaged over 5 training runs on
MNIST. Increasing the number of dis-
criminators accelerates convergence of
F to steady state (solid line) and re-
duces its variance, σ2 (filled shadow
±1σ). Figure 4.3 provides alternative
evidence of GMAN∗’s accelerated con-
vergence.

Figure 4.3: Stdev, σ, of the gener-
ator objective over a sliding window
of 500 iterations. Lower values in-
dicate a more steady-state. GMAN∗

with N = 5 achieves steady-state at
≈2x speed of GAN (N = 1). Note
Figure 4.2’s filled shadows reveal stdev
of F over runs, while this plot shows
stdev over iterations.

roborates this conclusion with recognizable digits appearing approximately an epoch

before the single discriminator run; digits at steady-state appear slightly sharper as

well.

Our GMAM metric (see Table 4.1) agrees with the relative quality of images in

Figure 4.4 with GMAN∗ achieving the best overall performance. Figure 4.5 reveals

GMAN∗’s attempt to regulate the difficulty of the game to accelerate learning. Fig-

ure 4.6 displays the GMAM scores comparing fixed λ’s to the variable λ controlled

by GMAN∗.

We see similar accelerated convergence behavior for the CelebA dataset in Fig-

ure 4.7.

69

Figure 4.4: Comparison of image quality across epochs forN = {1, 2, 5} using GMAN-
0 on MNIST.

Score Variant GMAN∗ GMAN-0 GMAN-max mod-GAN

B
et

te
r→

0.127 GMAN∗ - −0.020± 0.009 −0.028± 0.019 −0.089± 0.036
0.007 GMAN-0 0.020± 0.009 - −0.013± 0.015 −0.018± 0.027
−0.034 GMAN-max 0.028± 0.019 0.013± 0.015 - −0.011± 0.024
−0.122 mod-GAN 0.089± 0.036 0.018± 0.027 0.011± 0.024 -

Table 4.1: Pairwise GMAM metric means with stdev for select models on MNIST.
For each column, a positive GMAM indicates better performance relative to the row
opponent; negative implies worse. Scores are obtained by summing each variant’s
column.

Figure 4.8 displays images generated by GMAN-0 on CIFAR-10. See Appendix C.0.3

for more results.

We also found that GMAN is robust to mode collapse. We believe this is because

the generator must appease a diverse set of discriminators in each minibatch. Emit-

ting a single sample will score well for one discriminator at the expense of the rest of

the discriminators. Current solutions (e.g., minibatch discrimination) are quadratic

in batch size. GMAN, however, is linear in batch size.

4.6 Conclusion and Future Work

We introduced multiple discriminators into the GAN framework and explored dis-

criminator roles ranging from a formidable adversary to a forgiving teacher. Allowing

the generator to automatically tune its learning schedule (GMAN∗) outperformed

70

Figure 4.5: GMAN∗ regulates diffi-
culty of the game by adjusting λ. Ini-
tially, G reduces λ to ease learning and
then gradually increases λ for a more
challenging learning environment.

Score λ λ∗ λ = 1 λ = 0
(N = 5)

B
et

te
r→

0.028 λ∗ - −0.008
±0.009

−0.019
±0.010

0.001 λ = 1 0.008
±0.009

- −0.008
±0.010

−0.025 λ = 0 0.019
±0.010

0.008
±0.010

-

Figure 4.6: Pairwise GMAM
stdev(GMAM)

for

GMAN-λ and GMAN∗ (λ∗) over 5 runs on
MNIST.

GANs with a single discriminator on MNIST. In general, GMAN variants achieved

faster convergence to a higher quality steady state on a variety of tasks as measured

by a GAM-type metric (GMAM). In addition, GMAN makes using the original GAN

objective possible by increasing the odds of the generator receiving constructive feed-

back. Follow up research motivated by the curriculum training schedule just presented

achieved some of the highest quality images generated by a GAN to date [57].

4.6.1 Up Next

One of the benefits observed of GMAN is accelerated convergence of the minimax

loss to steady-state. Often, convergence of the loss along with visually satisfactory

samples indicates to practitioners that training is complete. However, do a steady

loss and steady sample quality imply that the weights of the game have converged?

The next chapter borrows techniques from dynamical system theory to answer this

question.

71

Figure 4.7: Image quality improvement across number of generators at same number
of iterations for GMAN-0 on CelebA.

Figure 4.8: Images generated by GMAN-0 on the CIFAR-10 dataset.

72

CHAPTER 5

ANALYZING NON-MONOTONE GAMES

5.1 Purpose of Research

Many of the equilibrium problems of interest in ML, for example GANs, are not

monotone. That being said, researchers have been able to employ heuristics to achieve

promising empirical results which demonstrates that training these models is tractable

to some degree. Similar challenges were encountered in deep learning. It was thought

that deep networks would be intractable to train due to their inherent non-convexity,

yet the repeated successes of researchers suggested otherwise. It was only recently

discovered through random matrix (Hessian) theory and other approaches that the

primary obstacles to successful optimization of deep networks are saddle points and

also that most local minima are only marginally suboptimal. This finding has been

followed by a surge of research into methods for “escaping saddle points”.

Given that monotone operator theory can not explain the success of GANs trained

with deep networks, we would like some set of tools for analyzing these more complex

models. In contrast to optimization theory where one can analyze a local neighbor-

hood by examining the spectrum of the Hessian, there exist structures in dynamical

systems that can only be recognized at a macro-scale. For example, we cannot neces-

sarily recognize a limit-cycle of large radius by examining the cycle’s center. Here, we

extend tools from dynamical systems theory, namely Lyapunov Exponent calculation,

for characterizing the dynamics of complex systems. These tools reveal qualitative

characteristics of the equilibrium dynamics including stable fixed points, limit cycles,

and strange attractors. By gaining a better understanding of complex equilibrium

73

problems we may develop better algorithms and better understand behavior away

from the equilibrium.

Spoiler : By computing the Lypapunov exponents, we are able to show that success-

fully trained GANs are not always converging to equilibria or even local neighbor-

hoods of equilibria. Instead they are sometimes converging to limit-cycles or strange

attractors. Our contribution focuses on identifying these challenges, and we leave

overcoming these challenges to future work.

5.2 Introduction

While the necessary progress in (non)-monotone operator theory / VIs may not

emerge for some time, Lyapunov exponent and machine learning techniques can pro-

vide useful empirical tools for analyzing game dynamics. In Section 5.3 we explain

how VI’s connection to projected dynamical systems allows us to apply a Monte-

Carlo sampling tool for analyzing complex VI problems; we then enhance this tool

in Section 5.4 so it scales to large games (i.e., many player variables). In Section 5.5

we discuss an interesting application in modeling the cloud services market economy.

We then we explore our proposed model with a hypothetical case study and demon-

strate the proposed machine learning pipeline on our new cloud services model. In

Section 5.7, we compute the Lyapunov exponents of GANs applied to a variety of

datasets and show that “successful” GAN training sometimes converges to strange

attractors.

5.3 Identifying Boundaries of Attraction

VI theory provides no general guarantees on the uniqueness of Nash equilibria

when losses are non-convex. This motivates an algorithmic approach to identifying the

number of equilibria, their locations, and possibly other phenomena. In particular, we

74

will leverage theory and algorithms from dynamical systems - we refer the interested

reader to the book by Strogatz [2014] for a gentle introduction.

Nagurney and Zhang [1996] established an equivalence between VIs and projected

dynamical systems that makes available new theory and algorithms, providing a foun-

dation for the necessary analysis.

Definition 1. Assuming that the feasible set X is a convex polytope, the projected

dynamical system, PDS(F,X), corresponding to VI(F,X) is ẋ = ΠX (x,−F (x)) with

x(0) = x0 and ΠX (x,−F (x)) = limδ→0
PX (x−δF (x))−x

δ
.

In terms of attractors, strongly monotone VIs admit only stable fixed points ac-

companied by a relatively small range of attractor dynamics including stable spirals

and nodes. As expected, less can be said of VIs arising from non-convex loss func-

tions. Other, qualitatively distinct attractors include limit cycles, tori, and strange

attractors (see Figure 5.1). It’s important to be aware of these other possible attrac-

Figure 5.1: Stable spiral (left) and limit cycle (right, dashed).

tors when analyzing a more complex system. For example, consider a stock exchange

and assume the market closed with prices at a stable equilibrium. A stock opening

the next morning in one range of prices may cause the group of stocks as a whole to

simply readjust to a new stable NE. On the other hand, opening the stock in another

range of prices may result in the group tending towards a limit cycle where prices

continuously oscillate. It’s then obvious that the ability to predict which ranges re-

sult in which behaviors helps determine where it’s best to open the stock. Thus, we

75

would like to identify the endpoints of these ranges, or more generally, the boundaries

of attraction (BoAs).

There are several existing techniques for identifying BoAs. The theory of Lya-

punov functions has long motivated a large group of these, however, they can only be

applied to restricted types of nonlinear systems and are not capable of identifying the

entire BoA [66]. Others attempt to approximate Lypapunov functions using a set of

scalar functions [88]. Still other, non-Lypunov based approaches have been proposed

that work backwards from the attractor. These methods tend to be lightweight, but

less reliable. Recently, Armiyoon and Wu [2014] developed a method for identifying

BoAs that relies on Lyapunov exponent (LE) theory. Convergence of LEs can be slow,

but they enjoy the advantage of being independent of initial conditions and can be

applied to general nonlinear systems. The authors proposed the use of Monte-Carlo

sampling to alleviate the computational load of calculating LEs. Their approach can

give us an idea of the number and types of attractors we can encounter in a bounded

space, but first, to understand their algorithm, we need an understanding of LEs.

LEs measure the long-term deformation of a sphere along a trajectory in the

dynamical system and are invariant within a single BoA. It’s this invariance property

that allows us to use the LE as a signature for the basin of attraction in spite of varying

initial conditions.1 Furthermore, LEs reveal the type of attractor. For instance, if all

values in the LE are negative, the attractor is a stable fixed point; if instead, one of

the values is zero, the attractor is a limit cycle (see Table 5.1).

Consider the following linear approximation to an n-dimensional dynamical sys-

tem, ẋ = F (x): ψ̇ = Jψ where we have replaced x with a matrix ψ whose columns

are meant to approximate the eigenvectors of the system. Assume the eigenvalues of

the Jacobian are distinct (implies its eigenvectors are linearly independent). In the

1Two basins may have the same LE though.

76

Type Sorted LE Spectrum
Stable Fixed Point (−, . . . ,−)
Limit Cycle (1-torus) (0,−, . . . ,−)
n-Torus (0, . . . , 0︸ ︷︷ ︸

n leading 0′s

,−, . . . ,−)

Chaos (repeller) (+, . . .)

Table 5.1: LE spectrum for continuous-time attractors.

following example, we will focus on the first column of ψ and assume ψ1(0) = u1,

the first unit-norm eigenvector. The following process provides intuition for the LE

computation process:

ψ̇1 = Jψ (5.1)

ψ1(t) = c1e
λ1tu1 + . . .+ cne

λntun (5.2)

ψ1(0) = u1 = c1u1 + . . .+ cnun =⇒ c1 = 1, c2 = . . . = cn = 0 (5.3)

ψ1(∆t) = u1e
λ1∆t (5.4)

log ||ψ1(∆t)|| = log ||u1e
λ1∆t|| = log(eλ1∆t) + log ||u1|| (5.5)

= λ1∆t. (5.6)

Therefore, by evolving the system ψ̇ = Jψ and tracking the change in norm of the

columns of ψ, we can attempt to recover the “eigenvalues” of the system.

The general idea of Armiyoon and Wu’s algorithm is to sample grid points with

high probability of being near a BoA, compute the LEs of the sampled grid point

as well as a few of its neighbors, and then compare LEs between all pairs of tested

points. If a pair of LEs do not match, then they are located on either side of a BoA

and the pair can be added to a training set for a classifier (e.g. SVM). In addition,

the probabilities of the neighbors can be increased since they are most likely near the

boundary as well. In the case where the LEs are the same (within some tolerance),

the probabilities can be reduced.

77

In their paper, they consider domains in R2 to R4. Low dimensionality allows them

to apply standard LE calculation techniques coupled with more basic ODE solvers

(e.g. constant step size) without compromising runtime. We are more interested in

the high dimensional domains that often occur in VIs with many players, each of which

controls multiple variables. Given a constant number of grid points per dimension,

the total number of grid points scales exponentially with the number of dimensions

and quickly makes this Monte-Carlo sampling approach impractical. Moreover, basic

ODE solvers may incorrectly track the trajectories of systems that contain multiple

time scales.

5.4 Improving the BoA Identification Algorithm

As stated, we would like to alter the BoA algorithm so it scales more gracefully

with dimensionality. The first step is to adjust the LE computation to be able to

accompany an ODE solver (S) with an adaptive step size scheme (T). While the

fix is somewhat trivial, it was very difficult to come across explicit LE computation

instructions for constant step sizes [117, 99] and we never found any such instructions

for adaptive step sizes. We include the necessary pseudocode in Algorithm 6.

78

Algorithm 6 LE for use with Adaptive Step Sizes

INPUT: F, x0,∆t0,S,T
1: Λ = (0, . . . , 0), ψ0 = I, k = 0, T = 0
2: J ← Jacobian(F(x)) · ψ
3: GS ← GramSchmidt without normalization
4: | · |c ← column-wise norm
5: repeat
6: xk+1 = S(xk,∆tk, F) *evolve trajectory
7: ψ̂k+1 = S(ψk,∆tk, J) *evolve ellipsoid
8: ψ̂k+1 = GS(ψ̂k+1) *orthogonalize ellipsoid
9: λ∆t = log(|ψ̂k+1|c) *measure growth

10: Λ = (Λ · T + λ∆t)/(T + ∆tk) *update mean
11: T = T + ∆tk

12: ψk+1 = ψ̂k+1/|ψ̂k+1|c *reset to sphere
13: ∆tk+1 = T(xk, xk+1, ψk, ψk+1,∆tk)
14: until Convergence of Λ

Next, we point out that computing an LE involves following the trajectory from

an initial point x0 until convergence. The runtime for this computation alone can

be extensive for high dimensional systems. Since the LE is a global property and

hence, in theory, a property shared by all points along the trajectory, ignoring the

computed LE’s association with all points along the trajectory seems particularly

wasteful. Instead of throwing out this information, we can include it by recognizing

that all subsequent points after the initial point along the trajectory are ideally pro-

gressing away from the boundary (assuming integer dimensional BoA’s). Moreover,

the LE gives us an idea of the exponential rate of divergence away from the boundary,

and so we can use the LE to decay the probability of grid points along the trajectory.

Algorithm 7 describes the steps used to adjust probabilities using this heuristic and

an example is displayed in Figure 5.2. This approach allows us to update the proba-

bilities of many more grid points per LE computation, helping to combat the issues

of dimensionality.

79

Figure 5.2: The probabilities of points farther along the trajectory (white to black)
should be reduced as they are most likely far away from any boundary. These adjust-
ments can be shared with the surrounding grid points.

5.5 A New Market Model

We demonstrate the potential of the proposed algorithm on a model of the promi-

nent, commercial cloud market that has arisen over the past decade. Several compa-

nies, or clouds, offer compute services to the public at different prices and qualities

of service. In general, the quality of a service degrades as the price is lowered. Each

cloud i advertises the same price-degradation pair, (pi, di), to every client j. As sug-

gested by Wang et al. [2015], client j’s demand for cloud i, Qij, is monotonically

decreasing in pi and di with a nonzero zero-utility cutoff. Note that while we will

continue to discuss this model in the context of cloud services, our model can likely

be applied to any industry where firms set prices for quality of service at a cost to

themselves.

Our demand function, Qij, consists of a squared-exponential spliced with a 5th

degree polynomial (coefficients β are in Appendix D.2). The function is twice dif-

ferentiable, contains both elastic and inelastic regions, and drops to zero-demand at

finite tij (see Figure 5.3). We’ve also included factors pr = pi
p̄
, dr = di

d̄
where p̄ and

d̄ are cloud price and degradation averages so that clients are also attracted to low

80

Algorithm 7 Update Grid Probability Along
Trajectory x

INPUT: LE, x,∆tk, dmax

1: Initialize hashes N,D
2: t = 0, T =

∑
∆tk, λ = max(|LE|)

3: for xk in x do
4: g,d = gridNeighborsDistances(xk)
5: for each (g, d) in (g,d) do

6: N [g]
+
= e−λ·t/T ·∆tk

7: D[g]
+
= ∆tk

8: end for
9: t

+
= ∆tk

10: end for
11: for each g in N,D do
12: P (g)

∗
= N [g]/D[g]

13: end for

prices/degradation in a relative sense. Client-cloud loyalty is simulated through client

j’s elasticity coefficient, αij, while purchasing power is given by Hij (see equations

5.7 and 5.8).

tij = αijpidiprdr (5.7)

Qij =


Hije

−t2ij , tij ∈ [0, tc]
5∑

k=0

βkt
i
ij , tij ∈ (tc, tc + 1)

0 , tij ∈ [tc + 1,∞)

(5.8)

πi =
∑
j

piQij(pi, di)︸ ︷︷ ︸
revenue

− ci
d2
i

Qij(pi, di)︸ ︷︷ ︸
cost

(5.9)

Figure 5.3: Proposed demand function Qij(tij) with tc = 1.

81

Cloud profit2, πi, is defined as revenue minus cost where cost scales as the square

of quality (1/di) with coefficient ci.

Let xi = (pi, di) ∈ [ε,∞)2, i ∈ 1, . . . , n, and Li(xi, x−i) = −πi, then we would

like to analyze the model given by VI(F,X) where F = (∇x1L1, . . . ,∇xnLn) and

X = [ε,∞)2n. Note that X is unbounded (not compact), so we are not guaranteed a

solution to the VI exists.

We stated in the introduction, an equivalence between the VI with pseudo-convex

losses and the NE problem. The cloud profit functions, as defined, are, in gen-

eral, non-concave. Although we no longer have a guarantee that solutions to the VI

are necessarily Nash equilibria, we still have an equivalence between VI(F,X) and

PDS(F,X). This means we can perform the same BoA analysis, but we’ll need to

check stable fixed points to see if they satisfy the Nash definition, which amounts to

solving n non-convex, 2-D, constrained optimization problems. In our solution, we

use Scikit-learn’s L-BFGS-B for this task [90]; runtime is negligible relative to the

BoA algorithm.

5.6 Cloud Services Experiment

To demonstrate the promise of the described pipeline, we focus on identifying the

BoA’s (as well as Nash equilibria) of our proposed cloud services market economy

model. Here we investigate a hypothetical scenario in which four cloud companies

compete for the opportunity to provide service to five clients looking to transfer

their in-house computation to the cloud. The first three cloud companies are large

providers with highly optimized servicing capabilities (lower ci), while the last two

are newcomers to the market, trying to fill a niche with higher cost green-tech (higher

ci). Client 1 is a big buyer loyal to clouds with the 3 lowest cost functions (e.g. big

2πi is nondifferentiable at di = 0, however, zero price and infinite quality are nonsensical, so our
market is constrained to [ε,∞)

82

name providers). Client 2 is a medium buyer with slight preference towards green-

tech. Client 3 is a small buyer who prefers green-tech, but is not opposed to a large

corporation. Client 4 is a big buyer loyal to cloud 1, but otherwise prefers green-tech.

To compute LEs, we’re using a projected version of Heun-Euler, a 2nd order, explicit

ODE solver with an adaptive step size.

Running the BoA algorithm3 over a 10 dimensional grid (6 points/dimension) with

the enhancements described in section 5.4 returns a set of of positive-negative samples

for each reference LE. After running an SVM on each LE sample set, we define the

boundaries as the critical points at which the SVM with the highest margin prediction

is dethroned by an SVM with a higher margin prediction.

Figure 5.4: Basins of attraction are marked stable or unstable and differentiated by
pattern, each with a gradient that runs from most likely belonging to the region
(dark) to least likely (light). Boundaries are marked by black lines.

In Figure 5.4, we consider a scenario where green-tech newcomer, cloud 5, enters

the pre-established cloud services market described above. Opening with (p5, d5)

in either of the stable regions sets the market on a path toward the same NE; the

two regions are mislabeled as distinct due to noise in their LE calculations. On

the other hand, launching their business in the unstable region results in chaos and

3All code at https://github.com/all-umass/VI-Solver

83

should be avoided. Although we can’t visualize both green-tech newcomers entering

the market (>3-D), we can quickly evaluate our SVM classifiers to determine the

corresponding basin of attraction and associated characteristic LE for any given set

of price-degradation pairs. Obviously, there are factors that our model does not take

into account. In spite of this, knowledge of BoAs combined with market monitoring

can also be used to suggest when a discussion of external intervention might be

prudent (e.g. government regulation) or when external intervention might transition

the market into a more desirable basin of attraction.

5.7 Lyapunov GANs

Several papers have conducted a local stability analysis of common GAN training

algorithms about the global equilibrium. In the remainder of this chapter, we explore

whether or not these analyses are relevant to current GAN training protocols. More

concretely, does successful GAN training imply convergence to a locally stable fixed

point or are weights possibly converging to other dynamics such as limit cycles and

strange attractors?

GANs produce the sharpest and most perceptually pleasing image samples to date.

They are also useful for other domains. Improving their performance and being able to

trust their training can make their widespread adoption into commercial applications

a reality. Understanding the dynamics at the end of GAN training will provide useful

information for developing better algorithms that converge to local equilibria. For

example, if GANs are converging to the local equilibrium, then we can use algorithms

and analysis that focuses on that. However, if GANs are converging to a limit cycle,

we can use algorithms designed to break through the cycle and converge towards

the center. And if GANs are converging to a strange attractor, we need to research

ways of finding the fixed point of these systems. Also, are their other implications

of converging to a strange attractor. Is that a desirable property? Here, we focus

84

on identifying the dynamics near the end of GAN training and leave overcoming the

identified challenges to future research.

Adam [59] is an algorithm commonly used to successfully train GANs, however,

the Adam update scheme is iteration dependent. This is to say that the dynamics

for Adam cannot be written down simply as an autonomous ODE, ẋ = F (x). To

compute the Lyapunov exponents for the GAN, we require this property. Therefore,

we shift focus to RMSProp [111], another popular algorithm used to successfully train

GANs. RMSProp can be written down as an autonomous ODE:

at = γat−1 + (1− γ)g2
t (5.10)

xt = xt−1 −
ηgt√
at + ε

(5.11)

where gt = ∇xf(xt). We can rewrite the RMSProp update as follows:

at = at−1 − (1− γ)(at−1 − g2
t) (5.12)

xt = xt−1 −
ηgt√

γat−1 + (1− γ)g2
t + ε

. (5.13)

After rewriting in this form, its ODE formulation is apparent:

ȧ = −(1− γ)(a− g2) (5.14)

ẋ = − ηg√
γa+ (1− γ)g2 + ε

. (5.15)

It was shown that RMSProp as well as other related algorithms like Adam are not

always locally convergent [94]. For this reason, after training the GANs with RM-

SProp, we switch to SGD in order to determine local convergence near the end of

training.

If the dimensionality of the dynamical system is very large (n � 10), then it is

more efficient to compute only the top-k LEs. In this case ψ0 is constructed as the

85

first k columns of I. Recall that the top LEs reveal the qualitative dynamics of the

system. Moreover, representing the Jacobian of a large system in memory can be

prohibitively expensive. Line 2 of Algorithm 6 only requires the action of J(F (x)) on

the ellipsoid ψ whose result is an n× k matrix; it does not require the n× n matrix

J(F (x)) on its own. This action can be approximated with finite differences:

[J(F (x)) · ψ]i ≈
F (x+ εψi)− F (x)

ε
(5.16)

where ε� 1 and the subscript i denotes the ith column of the matrix.

5.8 GAN Experiments

We compute LEs for GANs in several domains:

• Constant-Linear (CL-GAN) and Linear-Quadratic GAN (LQ-GAN): We ex-

amine simultaneous gradient descent and the consensus algorithm applied to

learning the mean and variance of a 1-d distribution. We use this setting to

illustrate how Lyapunov exponents recover known properties of these systems.

• Mixture of 8 (MO8G) and 25 Gaussians (MO25G): Fitting mixtures of Gaus-

sians is a common benchmark for GAN models. We show that successfully

trained neural-network based GANs can exhibit positive LEs in this setting.

By examining the change in the norm and angle of the weights throughout

training with RMSProp, we establish that the weights naturally stay within

a compact set. This fact combined with positive LEs suggest the weights are

caught in a strange attractor.

• MNIST and CIFAR-10: We discover similar results when performing the same

calculations for these popular image dataset benchmarks. GAN training with

RMSProp gets caught in a strange attractor.

86

Note that assuming simultaneous gradient descent, the Wasserstein GAN was shown

to be cyclic locally while the original objective is locally stable [80]. However, the

consensus algorithm [74] is proven to converge to a local equilibrium if the step size is

small enough and the iterates are near enough to the equilibrium, ||xk − x∗|| < ε. In

the following experiments, we train GANs using neural network distance [8] (similar

to Wasserstein distance) and have found the consensus algorithm to perform quite

well in practice.

Standard GAN training uses stochastic optimization methods which estimate ex-

pectations using minibatches of samples. To remove the possibility of stochasticity

introducing chaotic behavior and conflating our understanding of training dynamics,

we sometimes use one large, single minibatch to compute expectations over both p(z)

and p(x) throughout the entire training process. We will distinguish between this set-

ting and the traditional stochastic setting by writing [Det] or [Sto] at the beginning

of the Figure caption.

5.8.1 CL and LQ-GAN

The analytically computed Lyapunov exponents for simultaneous gradient descent

applied to the constant-linear GAN (CL-GAN) are Λ1,2 = log(
√

1 + α2)/α = 0.005

where α = 0.01 is the step size.

Proof. For the CL-GAN, xk+1 = xk − αAxk = (I − αA)xk where A =

 0 1

−1 0

 =

−A>. Let ||xk|| = 1.

87

||xk+1||2 = ||(I − αA)xk||2 (5.17)

= x>k (I − αA)(I − αA)xk (5.18)

= x>k (I + α2A>A)xk (5.19)

= (1 + α2)||xk||2 = 1 + α2 (5.20)

=⇒ Λ1,2 =
log ||xk+1||

α
=

log
√

1 + α2

α
. (5.21)

The consensus algorithm applied to the same problem gives Λ1,2 = −1.005.

Proof. For the CL-GAN, xk+1 = xk − αA
>−A
2

Axk = (1− α)xk.

||xk+1||2 = ||(1− α)xk||2 (5.22)

=⇒ Λ1,2 =
log ||xk+1||

α
=

log(1− α)

α
= −1.005. (5.23)

Note these agree with the values empirically computed using finite differences (see

values reported in the titles of Figure 5.5).

0 1000 2000 3000 4000 5000
Iteration

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

To
p-

2
Ly

ap
un

ov
 E

xp
on

en
ts

 (
1,

2) LE range = (0.005,0.005)

0 1000 2000 3000 4000 5000
Iteration

1.02

1.00

0.98

0.96

To
p-

2
Ly

ap
un

ov
 E

xp
on

en
ts

 (
1,

2) LE range = (-1.000,-1.000)

Figure 5.5: [Det] Top two Lyapunov exponents vs iterations for CL-GAN trained
with simultaneous gradient descent (left) and the consensus algorithm (right).

88

We plot the exponents computed using stochastic optimization in Figure 5.6. Note

the exponent calculation remains accurate although convergence to the analytical

values is mildly delayed.

0 1000 2000 3000 4000 5000
Iteration

0.005

0.000

0.005

0.010
To

p-
2

Ly
ap

un
ov

 E
xp

on
en

ts
 (

1,
2) LE range = (0.005,0.005)

0 2000 4000 6000 8000 10000
Iteration

1.0

0.8

0.6

0.4

0.2

To
p-

2
Ly

ap
un

ov
 E

xp
on

en
ts

 (
1,

2) LE range = (-0.998,-0.992)

Figure 5.6: [Sto] Top two Lyapunov exponents vs iterations for CL-GAN trained with
simultaneous gradient descent (left) and the consensus algorithm (right).

The consensus algorithm applied to the LQ-GAN results in Λ1,2 ≈ 0.03,−0.15

which supports the earlier analysis (see Sections 3.7.1 and 3.8) that the consensus

algorithm is not convergent on this domain.

0 10000 20000 30000 40000 50000
Iteration

1.0

0.5

0.0

0.5

1.0

1.5

To
p-

2
Ly

ap
un

ov
 E

xp
on

en
ts

 (
1,

2) LE range = (-0.149,0.032) Weights Trajectory Projected onto

Figure 5.7: [Det] Top two Lyapunov exponents vs iterations for LQ-GAN trained
with the consensus algorithm (left) and weights projected onto the first two columns
of ψ (right). The trajectory of Λ1,2 over iterations reveals that the system is initially
chaotic (positive leading exponent) and then converges toward a limit cycle (near
zero leading exponent). The trajectory of the weights projected onto ψ supports this
conclusion: initial portions of the trajectory (light gray) exhibit chaos while later
portions (black) reveal cyclic behavior.

89

5.8.2 Mixture of Gaussians

The Lyapunov exponents for MO8G with RMSProp+consensus are 942 and 895

(see Figure 5.8). For MO25G, they are 7296 and 7089 (see Figure 5.9). Losses

for both systems have converged to steady-state and sample distributions for both

systems accurately reflect ground truth, yet the LEs computed after switching to SGD

are near zero for MO8G indicating a limit cycle and positive for MO25G indicating

chaos.

0 50000 100000 150000
Iteration

0

200

400

600

800

1000

To
p-

2
Ly

ap
un

ov
 E

xp
on

en
ts

 (
1,

2) LE range = (895.063,942.010)

0 50000 100000 150000
Iteration

0.00

0.05

0.10

0.15

M
in

im
ax

 L
os

s

Final Loss: 7.147e-04

0 50 100 150
Iteration

8.0

8.5

9.0

9.5

10.0

10.5

No
rm

 o
f W

ei
gh

ts
 (|

|w
||)

Norm of Weights Over Trajectory
(p2p=2.386)

0.004

0.008

0.012

0.016

0.
01

6 0.
01

6

0.0
16 0.016

0.016

0.020

0.
02

0

0.
02

0

0.
02

0

0.024 0.024
0.0

24

0.028

0.028

0 10000 20000 30000
Iteration

0.8

0.6

0.4

0.2

0.0

To
p-

2
Ly

ap
un

ov
 E

xp
on

en
ts

 (
1,

2) LE range = (-0.008,-0.002)

0 10000 20000 30000
Iteration

0.00150
0.00175
0.00200
0.00225
0.00250
0.00275
0.00300

M
in

im
ax

 L
os

s

Final Loss: 3.014e-03

0 10 20 30
Iteration

8.08

8.10

8.12

No
rm

 o
f W

ei
gh

ts
 (|

|w
||)

Norm of Weights Over Trajectory
(p2p=0.060)

0.000

0.006

0.012

0.012

0.018

0.018

0.0
24

0.024

0.024

0.024

0.024

0.
03

0 0.030

0.030

0.030
0.030

0.036 0.036

0.036

Figure 5.8: [Det] Top two Lyapunov exponents (left), minimax loss (2nd column),
Euclidean norm of the weights (3rd column), and final samples (right) vs iterations
for a GAN trained with RMSProp+consensus on a mixture of 8 Gaussians (top row).
Training is continued without RMSProp in the bottom row. We also tried rescaling
the gradients by the final exponentially averaged norms obtained by RMSProp, but
have not presented them here because this approach immediately diverged (NaNs).

5.8.3 MNIST

The Lyapunov exponents for RMSProp+consensus (stochastic) are 5041 and 3789

(see Figure 5.10). Notice in Figure 5.10 (see insets) that we observe highest sample

quality when the loss is stable. This coincides with a steady norm for the weights.

However, the LEs over this period are increasing, which suggests the system is be-

coming more chaotic. The constant norm suggests the weights are remaining within

some compact ball, yet the positive exponents suggest the system is divergent. These

90

0 50000 100000 150000
Iteration

0

2000

4000

6000

8000

10000

12000

To
p-

2
Ly

ap
un

ov
 E

xp
on

en
ts

 (
1,

2) LE range = (7.089e+03,7.296e+03)

0 50000 100000 150000
Iteration

0.00

0.05

0.10

0.15

M
in

im
ax

 L
os

s

Final Loss: 3.006e-03

0 25 50 75 100 125 150
Iteration

20

30

40

No
rm

 o
f W

ei
gh

ts
 (|

|w
||)

Norm of Weights Over Trajectory
(p2p=30.910)

0.040

0.060

0.
06

0

0.0
60

0.060

0.
06

0

0.060

0.060

0.080

0.080

0.080

0.080

0.080
0.1

00

0.120

0.1200.140

0 10000 20000 30000
Iteration

0.0
2.5
5.0
7.5

10.0
12.5
15.0

To
p-

2
Ly

ap
un

ov
 E

xp
on

en
ts

 (
1,

2) LE range = (0.472,0.969)

0 10000 20000 30000
Iteration

0.004

0.006

0.008

0.010

M
in

im
ax

 L
os

s

Final Loss: 1.023e-02

0 10 20 30
Iteration

0.001

0.000

0.001

0.002

No
rm

 o
f W

ei
gh

ts
 (|

|w
||)

+1.36e1

Norm of Weights Over Trajectory
(p2p=0.004)

0.
05

0

0.
07

5

0.100

0.100

0.125
0.150

0.150

0.150

0.175

0.1
75

0.175

0.200

0.200

0 10000 20000 30000
Iteration

0

2000

4000

6000

8000

To
p-

2
Ly

ap
un

ov
 E

xp
on

en
ts

 (
1,

2) LE range = (6.204e+03,6.262e+03)

0 10000 20000 30000
Iteration

0.004

0.006

0.008

0.010

M
in

im
ax

 L
os

s

Final Loss: 3.081e-03

0 10 20 30
Iteration

13.6

13.8

14.0

14.2

No
rm

 o
f W

ei
gh

ts
 (|

|w
||)

Norm of Weights Over Trajectory
(p2p=0.583)

0.
06

0

0.060

0.
06

0

0.075

0.075

0.075

0.075

0.090

0.090

0.
09

0

0.105

0.1
05

0.105

0.105

0.105

0.105

0.105

0.120

0.120

0.120

0.120

0.135

Figure 5.9: [Det] Top two Lyapunov exponents (left), minimax loss (2nd column),
Euclidean norm of the weights (3rd column), and final samples (right) vs iterations
for a GAN trained with RMSProp+consensus on a mixture of 25 Gaussians (top row).
Training is continued without RMSProp in the middle row. We also tried rescaling the
gradients by the final exponentially averaged norms obtained by RMSProp (bottom
row).

two together suggest a strange attractor that is becoming increasingly chaotic. The

system finally “breaks” around 300 thousand iterations at which point the norm of

the weights increases until the loss stabilizes again and sample quality returns to its

previously high level.

5.8.4 CIFAR-10

The Lyapunov exponents for RMSProp+consensus (stochastic) are 19884 and

15931 (see Figure 5.11). The loss in Figure 5.11 remains relatively stable and the

norms of the weights appear to be approaching an asymptote. We would need to

train for many more iterations to confirm that the system is caught in a strange

attractor, but based on results from the domains examined above, it is likely.

91

0k 100k 200k 300k 400k 500k
Iteration

0

20000

40000

60000

80000

To
p-

2
Ly

ap
un

ov
 E

xp
on

en
ts

 (
1,

2) LE range = (3.789e+03,5.041e+03)

0 100 200 300 400 500
Iteration

40

60

80

No
rm

 o
f W

ei
gh

ts
 (|

|w
||)

Norm of Weights Over Trajectory
(p2p=60.132)

0k 20k 40k 60k 80k 100k
Iteration

0

2

4

6

8

10

To
p-

2
Ly

ap
un

ov
 E

xp
on

en
ts

 (
1,

2) LE range = (0.106,0.351)

0k 20k 40k 60k 80k 100k
Iteration

0.0004

0.0006

0.0008

0.0010

M
in

im
ax

 L
os

s

Final Loss: 8.224e-04

0 25 50 75 100
Iteration

0.000045

0.000050

0.000055

0.000060

0.000065

No
rm

 o
f W

ei
gh

ts
 (|

|w
||)

+8.23046e1

Norm of Weights Over Trajectory
(p2p=0.000)

Figure 5.10: [Sto] Top two Lyapunov exponents (left), minimax loss (2nd column),
Euclidean norm of the weights (3rd column), and final samples (right) vs iterations for
a GAN trained on MNIST with RMSProp+consensus (top) and then just consensus
(bottom).

0k 100k 200k 300k 400k 500k
Iteration

0

5000

10000

15000

20000

To
p-

2
Ly

ap
un

ov
 E

xp
on

en
ts

 (
1,

2) LE range = (1.593e+04,1.988e+04)

0 100 200 300 400 500
Iteration

30

40

50

60

No
rm

 o
f W

ei
gh

ts
 (|

|w
||)

Norm of Weights Over Trajectory
(p2p=38.828)

0k 20k 40k 60k 80k 100k
Iteration

0

1

2

3

To
p-

2
Ly

ap
un

ov
 E

xp
on

en
ts

 (
1,

2) LE range = (1.636,1.762)

0k 20k 40k 60k 80k 100k
Iteration

0.010

0.015

0.020

M
in

im
ax

 L
os

s

Final Loss: 1.502e-02

0 20 40 60 80 100
Iteration

0.00575

0.00600

0.00625

0.00650

0.00675

0.00700

No
rm

 o
f W

ei
gh

ts
 (|

|w
||)

+6.423e1

Norm of Weights Over Trajectory
(p2p=0.001)

Figure 5.11: [Sto] Top two Lyapunov exponents (left), minimax loss (2nd column),
Euclidean norm of the weights (3rd column), and final samples (right) vs iterations for
a GAN trained on CIFAR-10 with RMSProp+consensus (top) and then just consensus
(bottom).

Note that the GAN trained on CIFAR-10 consistently generated high quality

samples (see inset of loss in Figure 5.11) while the one trained on MNIST exhibited

intermittent periods of divergence that prevented successful training. Below in Fig-

ure 5.12, we plot the PCA-projected trajectories for both domains—the trajectory

for the GAN successfully trained on CIFAR-10 matches the trajectories of successful

trained models reported in [70].

92

Weights Trajectory Projected onto Top-2 PCs
(p2px, p2py) = (74.888,52.690)

Weights Trajectory Projected onto Top-2 PCs
(p2px, p2py) = (59.344,40.889)

Figure 5.12: Projection of the generator and discriminator weights onto the top two
principal components vs iterations for a GAN trained on MINST (left) and CIFAR-10
(right) using RMSProp.

5.9 Conclusion and Future Work

In this chapter, we presented an improved Lyapunov Exponent calculation and

Boundary of Attraction Identification algorithm. We demonstrated this algorithm on

an economic game model of the cloud services economy. We also computed the top-k

Lyapunov exponents of GANs using finite differences to approximate the Jacobian-

vector products that are required.

By computing the Lypapunov exponents, we were able to show that successfully

trained GANs are not always converging to equilibria or even local neighborhoods of

equilibria. Given that adaptive stochastic gradient methods like RMSProp and Adam

are the training methods of choice for GANs, it appears that successful training often

means trapping the GAN in a limit cycle or strange attractor. Figuring out how

RMSProp remains “trapped” in these attractors will require more research.

93

CHAPTER 6

CONCLUSION AND FUTURE WORK

In this dissertation we have made several contributions.

We began by introducing a framework for solving monotone equilibrium problems

in an online or streaming setting, namely Online Monotone Equilibration (OME).

This framework was constructed using a notion of regret that is defined as the path

integral over the vector field associated with the equilibrium problem. By leveraging

the properties of monotonicity, we can ensure that an Extragradient type algorithm

achieves vanishing average regret as the number of samples in the stream approaches

infinity. The no-regret algorithm derived from this framework is novel in the sense

that the first step of the Extragradient update uses a stepsize that is growing at a rate

O(T 1/4) with respect to the stepsize of the second step. Unlike some other algorithms

in the literature, ours does not require storing and averaging the iterates or the maps.

We presented applications of OME which included equilibrating models of market

economies, providing guarantees for network packet protocols, learning agent policies

from non-stationary behavioral policies, and training a GAN online. With regards to

variational inequality problems and their applications (market economies, traffic net-

works, supply chains, etc.) specifically, OME supports monotonicity as an important

property to a dynamic, healthy ecosystem in which the goal is to have all interested

parties safely track the equilibrium. It also suggests foresight (as Extragradient uses

gradients from the “future”) is critical to reaching an equilibrium.

The path integral loss used to construct OME supports a more sophisticated

algorithm suited for the offline setting. We called this new algorithm Crossing-the-

94

Curl and proved that it is guaranteed to solve a certain GAN variant: the Linear-

Quadratic GAN (LQ-GAN). Solving the LQ-GAN is equivalent to fitting a normal

distribution to data, and so it represents a fundamental problem in density estimation

or generative modeling. In addition to proving that Crossing-the-Curl solves the LQ-

GAN with finite sample convergence rate guarantees, we showed the negative result

that at the time of this thesis, none of the current GAN training algorithms provably

solve the LQ-GAN according to both Variational Inequality (VI) and Dynamical

Systems (Hurwitz) convergence theory.

Our approach to solving the LQ-GAN required applying Crossing-the-Curl in

stages, increasing the complexity of the discriminator and generator at each stage.

This insight motivates a more tailored training regimen for GANs in which discrimi-

nators of varying complexity are pitted against the generator. We called this setting

Generative Multi-Adversarial Networks (GMAN). In this setting, the generator can

be given control over which discriminators to focus on, deemed GMAN*, and experi-

ments revealed an intuitive pattern. The generator chooses to compete against a weak

discriminator initially, but competes against successively more complex discrimina-

tors later in training. In general, we found that introducing a variety of discriminators

in to the training regimen resulted in 1) reduced variance of the minimax objective, 2)

improved quality of generated samples, and 3) accelerated convergence of the minimax

objective to steady-state.

The third property of GMAN prompted a closer inspection of the dynamics at

the end of training. Does convergence of the minimax objective imply convergence

of the generator and discriminator weights? More generally, what dynamics do the

weights exhibit during training? To answer these questions, we computed the top-2

Lyapunov exponents of the system throughout training. The exponents we computed

revealed that convergence of the objective does not necessarily imply convergence of

the weights. The exponents also confirmed that a popular GAN training algorithm,

95

RMSProp, is not convergent [94]. Despite this fact, RMSProp (as opposed to non-

adaptive gradient methods) is critical to successful GAN training. In some cases,

switching to the consensus algorithm, a better understood yet more primitive training

algorithm, revealed that the weights were in fact near a local equilibrium. In other

cases, the Lyapunov exponents remained near zero suggesting the weights were caught

in a limit-cycle or strange attractor.

The work in this thesis aims at making fundamental steps toward better un-

derstanding equilibrium problems as they pertain to machine learning and learning

theory more generally. We hope that this work will provide a useful foundation for

artificial intelligence and machine learning researchers to extend and study relevant

equilibrium problems.

6.1 Future Work

With regards to our theoretical contributions, we focused on controlled settings

where we could make progress. We intend to build on this progress by relaxing our

assumptions and tackling other types of equilibrium problems. We also intend to

explore more tangential applications of the ideas presented here. For example,

1. Is the β-smoothness constraint crucial to obtaining regret bounds? Can we

relax this constraint? What is a simple example of a non-smooth vector field?

What about an example that is not the gradient of any function?

2. In the OME framework, we assumed the addition of a strongly-convex regular-

izer to the path integral loss to make the adversarial setting learnable. In an

equilibrium problem, it may make more sense to bias learning with a strongly-

monotone field. In future work, we can look into replacing R(x) with the path

integral over a strongly-monotone field.

96

3. The modified path integral loss used to formulate OME suggested including an

extra term beyond what we explored for Crossing-the-Curl : −〈zt, ẑt〉. Does an

analysis including this modification improve convergence for the LQ-GAN?

4. We studied the LQ-GAN with only one possible parameterization. Does a

different parameterization, for example, one where D(y) = w2(y−w1)2, lead to

better training dynamics? If the dynamics exhibit a symmetric Jacobian, what

is the derived convex divergence between distributions?

5. We were able to use the fundamental theorem of calculus for path integrals to

construct a general loss function for equilibrium problems. Machine learning

models often consist of loss functions paired with function approximators. Can

we use the path integral to define new function approximators as well? What

advantages does this parameterization allow?

6. In this thesis we encountered several obstacles to equilibration that do not

appear in optimization. In some cases, for example when deriving an algorithm

to solve the LQ-GAN, we were able to turn the equilibrium problem into an

optimization problem. Should this always be the goal—to somehow remove the

rotation and transform the problem into a simpler one? When is it possible1?

Or is there a reason to desire the more general dynamics possible in equilibrium

problems?

7. In Chapter 4, we introduced the GMAM metric for comparing the performance

of different GAN models. Recently, Balduzzi et al. [2018] introduced a theoret-

ically sound framework for evaluating agent-vs-agent play. We may be able to

apply this framework to improve the evaluation of GANs.

1We might start with the Hairy Ball theorem [51].

97

8. Stochastic gradient descent was recently proven to converge to limit cycles [20]

suggesting that equilibrium algorithms that converge in the presence of cycles,

e.g., Crossing-the-Curl, may be helpful here. In future work, we will explore

this possibility experimentally.

9. A complete convergence analysis of the solution to an equilibrium problem re-

quires analyzing the selected algorithm paired with the problem. For example,

a complete convergence analysis of a GAN requires analyzing the selected algo-

rithm, e.g., Crossing-the-Curl, paired with the chosen divergence, e.g., Jensen-

Shannon, and function approximators, e.g., deep networks. In future work, we

will examine more of these combinations to better understand the best mar-

riages for each problem.

As suggested by prior work in computational neuroscience, interesting behavior

reminiscent of transient cognitive dynamics emerges just outside the boundary of

monotone systems (i.e., just one eigenvalue of the Jacobian is negative) [91]. Can a

strong understanding of monotone equilibrium problems better equip us to explore

the space beyond their boundary? Other work argues that integrated information

possibly achieved via sensitivity to initial inputs is crucial (i.e., diverging dynamics are

required) to an emerging consciousness [113]. More generally, the brain’s intelligence

is highly parallel and distributed which motivates research to move away from the

monolithic learning formulations given by optimization and toward the multi-agent

systems present in game theory and equilibration. We hope the tools presented here

can help with the transition.

98

APPENDIX A

ONLINE MONOTONE EQUILIBRATION

This appendix serves as a supplement primarily to Chapter 2, however, we include

additional proofs (e.g., the following section) and materials that may be of interest to

the reader looking for more insight. In some cases, we consider a more general path

integral loss starting at a vector o deemed a reference vector rather than the standard

x∗:

fo(x) = fo(o) +

∫
o→x
〈F (z), dz〉. (A.1)

A.1 Pseudo-monotonicity in Integral Form

Definition 2 (Pseudo-monotone). F is pseudo-monotone if the following one-way

implication holds for all x, y ∈ X : 〈F (x), y − x〉 ≥ 0 =⇒ 〈F (y), y − x〉 ≥ 0.

Lemma 2. If F is pseudo-monotone, F also obeys the following one-way implication

〈F (x), y − x〉 ≥ 0 =⇒
∫
z:x→y

〈F (z), dz〉 ≥ 0. (A.2)

Proof. Assume 〈F (x), y − x〉 ≥ 0 and let ∆z = y−x
n

for n ∈ Z+. Then

〈F (x), y − x〉 = 〈F (x),
y − x
n
〉 · n (A.3)

= 〈F (x),∆z〉 · n (A.4)

≥ 0 (A.5)

=⇒ 〈F (x), i∆z〉 ≥ 0 ∀ i ≥ 0 (A.6)

99

Let i∆z = (x+ i∆z)− x = ŷi − x. Then

〈F (x), i∆z〉 ≥ 0 ∀ i ≥ 0 (A.7)

=⇒ 〈F (x), ŷi − x〉 ≥ 0 ∀ i ≥ 0 (A.8)

=⇒ 〈F (ŷi), ŷi − x〉 ≥ 0 ∀ i ≥ 0 (A.9)

=⇒ 〈F (ŷi), i∆z〉 ≥ 0 ∀ i ≥ 0 (A.10)

=⇒ 〈F (ŷi),∆z〉 ≥ 0 ∀ i ≥ 0 (A.11)

=⇒
n∑
i=0

〈F (ŷi),∆z〉 ≥ 0 (A.12)

where ∆z = ∆z(n) (A.13)

=⇒ lim
n→∞

n∑
i=0

〈F (ŷi),∆z〉 ≥ 0 (A.14)

=

∫
z:x→y

〈F (z), dz〉 ≥ 0. (A.15)

A.2 Theorem 1: OCO ⊂ OMO

Let the feasible set, X , and field, F (x), be defined as follows:

x = [r, c] ∈ X ≡ [0, 1]2, (A.16)

F (x) =
(

r2+2rc+c2

−2r2+2rc+c2

)
(A.17)

with equilibrium point x∗ = [0, 0].

A.2.1 F is monotone over X = [0, 1]2

The symmetric part of the Jacobian of F is positive semi-definite:

100

J(F) =
(

2r+2c 2r+2c
−4r+2c 2r+2c

)
, (A.18)

Js(F) =
1

2
(J + J>) =

(
2r+2c 2c−r
2c−r 2r+2c

)
(A.19)

with

det(Js) = 3r2 + 12rc ≥ 0 ∀ [r, c] ∈ X , (A.20)

τ(Js) = 4r + 4c ≥ 0 ∀ [r, c] ∈ X , (A.21)

=⇒ Js(F) � 0. (A.22)

The trace and determinant of the (2×2 matrix) symmetrized Js are both non-negative,

which imply the eigenvalues of Js are non-negative. Therefore, F is monotone.

A.2.2 f is non-convex over X = [0, 1]2

The path integral over the field F starting at x∗ is

f(x) = ��fo +

∫
z:o→x

〈F, dz〉 (A.23)

=

∫ 1

0

〈F (o+ τ(x− o)), (x− o)dτ〉 (A.24)

=

∫ 1

0

〈F (τx), x〉dτ (A.25)

=
1

3
(r3 + 3rc2 + c3) (A.26)

with Hessian

H(f) =
(

2r 2c
2c 2r+2c

)
, (A.27)

det(H) = 4(r2 + rc− c2) < 0∀ {[r, c] | [r, c] ∈ X , c >
√

5 + 1

2
r} (A.28)

=⇒ H���0. (A.29)

101

This means f forms a saddle surface over a compact subset of X , therefore, it is

non-convex. In fact, f is not even quasi-convex. For example, let x0 = [0, 0.8], xf =

[0.5, 0.45] and consider their midpoint, then

f(
x0 + xf

2
) � max{f(x0), f(xf)}. (A.30)

The following example provides a field whose path integral is non-convex over an

unconstrained domain. The field F and its Jacobian are shown below:

F = [2x+
2

π
sin(

π

2
y), 2y +

2

π
sin(

π

2
x)], (A.31)

J =

 2 cos(π
2
y)

cos(π
2
x) 2

 , (A.32)

Jsym =

 2 1
2
(cos(π

2
x) + cos(π

2
y))

1
2
(cos(π

2
x) + cos(π

2
y)) 2

 � 1 (A.33)

with x∗ = [0, 0]. The path integral over this field and its indefinite Hessian are

f = x2 + y2 − 4

π2
(
y

x
(cos(

π

2
x)− 1) +

x

y
(cos(

π

2
y)− 1)), (A.34)

H =

 2− y
x

(
8(cos(πx

2
)−1)

(πx)2
+

4 sin(πx
2

)

πx
− cos(πx

2
)
)

4
(

cos(πx
2

)−1

(πx)2
+

sin(πx
2

)

2πx
+

cos(πy
2

)−1

(πy)2
+

sin(πy
2

)

2πy

)
4
(

cos(πx
2

)−1

(πx)2
+

sin(πx
2

)

2πx
+

cos(πy
2

)−1

(πy)2
+

sin(πy
2

)

2πy

)
2− x

y

(
8(cos(πy

2
)−1)

(πy)2
+

4 sin(πy
2

)

πy
− cos(πy

2
)
)
 ,

(A.35)

H|x=1,y=10 =

2− 40
π

(1− 2
π
) 2(25π−51)

25π2

2(25π−51)
25π2 2− 1

10
+ 2

125π2

 =

−2.626 0.223

0.223 1.902

���0. (A.36)

102

A.3 Theorem 2: OME ≡ OCO for Positive definite Affine

Maps

This concerns such problems as linear complementarity problems (LCPs):

Ft(xt) = Axt + b (A.37)

where xt, b, ot ∈ Rn, A � 0 ∈ Rn×n. The path integral over the field Ft starting at ot

(e.g., ot = x∗t) is a quadratic function,

ft(xt)− fot = (A.38)

=

∫
x:ot→xt

〈Ft, dx〉 (A.39)

=

∫ 1

0

〈Ft(ot + τ(xt − ot)), (xt − ot)dτ〉 (A.40)

=

∫ 1

0

〈A(ot + τ(xt − ot)) + b, (xt − ot)dτ〉 (A.41)

=

∫ 1

0

〈Aot + τA(xt − ot) + b, (xt − ot)dτ〉 (A.42)

=

∫ 1

0

〈Aot + b, (xt − ot)dτ〉

+ τ〈A(xt − ot), (xt − ot)dτ〉 (A.43)

= 〈Aot + b, (xt − ot)〉

+
1

2
〈A(xt − ot)), (xt − ot)〉 (A.44)

= o>t A
>xt − o>t A>ot + b>(xt − ot)

+
1

2
(xt − ot)>A>(xt − ot) (A.45)

= o>t A
>xt − o>t A>ot + b>(xt − ot)

1

2
[x>t A

>xt − o>t A>xt − x>t A>ot + o>t A
>ot] (A.46)

=
1

2
[x>t A

>xt + x>t (A− A>)ot − o>t A>ot] + b>(xt − ot) (A.47)

=
1

2
[x>t

(A+ A>

2

)
xt + x>t (A− A>)ot − o>t A>ot] + b>(xt − ot), (A.48)

103

with positive definite Hessian

Hessian(ft) =
1

2
[A+ A>] � 0 =⇒ ft is convex. (A.49)

This also implies that every multivariate function with nonzero Hessian can be repre-

sented by an infinite number of fields (other than the gradient), specifically any field

whose symmetric component equals A+A>

2
.

A.4 Monotone Equilibration with o = x∗

Here, we consider the case where the reference point is the solution to the corre-

sponding variational inequality problem, o = x∗ = V I(F,X). Remember, this means

x∗ is an equilibrium point of the field, F , and has the property

〈F (x∗), z − x∗〉 ≥ 0 ∀z ∈ X . (A.50)

Theorem 4. If o is a solution to V I(F,X) where F : X → Rn is a monotone (or at

least pseudo-monotone) map and X is a convex set, then o is a global minimizer of

the monotone optimization problem with map F , reference vector o, and any reference

scalar fot.

Proof. Without loss of generality, let f(o) = 0. Then

∇x

{∫
z:o→x

〈F (z), dz〉
}∣∣∣

x=o
= (A.51)

= ∇x

{∫
t:0→1

〈F (o+ t(x− o)), x− o〉dt
}∣∣∣

x=o
(A.52)

=

∫
t:0→1

{
F (o+ t(x− o))+ (A.53)

J(o+ t(x− o))>(x− o)tdt
}∣∣∣

x=o
(A.54)

=

∫
t:0→1

{
F (o)

}
(A.55)

= F (o). (A.56)

104

A necessary first order condition for optimality is

〈F (o), z − o〉 ≥ 0 ∀z ∈ X , (A.57)

which by the definition of the variational inequality problem is solved by o = x∗.

Reversing this result

f(o) = 0 ≤ 〈F (o), z − o〉 ≤
∫
x:o→z

〈F (x), dx〉 = f(x) (A.58)

reveals that o = x∗ is also a global minimum.

This directly implies that the Projection Method (online gradient descent with

R = 1
2η
||x2||) converges exponentially fast to a minimum of the path integral loss for

strongly monotone fields.

Note that the optimality proof also carries through for pseudo-monotone fields

(see A.1):

f(o) = 0 ≤ 〈F (o), z − o〉 (A.59)

=⇒ 0 ≤
∫
x:o→z

〈F (x), dx〉 = f(x) (A.60)

which reveals that o = x∗ is also a global minimum of the pseudo-monotone loss.

A.5 Upper and Lower Bounds for Path Integral Loss

In this section, we derive linear lower and upper bounds for the path integral

loss assuming x̂ = prox(x). First, we review proximal maps. We assume Ft has

bounded norm, i.e., ||Ft(y)||q ≤ Lt ∀y, and is βt-smooth, i.e., ||Ft(x) − Ft(y)||q ≤

βt||x− y||p ∀x, y for some p ∈ [1, 2] and some q such that 1/p+ 1/q = 1.

105

A.5.1 Proximal Maps

We assume the following form for the proximal map:

prox(x) = arg min
z∈Rn

(
〈F (x), z〉+

1

η̂
D(z, x) + ιX (z)

)
(A.61)

= arg min
z∈X

(
〈F (x), z〉+

1

η̂
D(z, x)

)
(A.62)

= arg min
z∈X

g(z, x), (A.63)

D(z, x) = ψ(z)− ψ(x)− 〈ψ′(x), z − x〉, (A.64)

where ιX is the indicator function,

ιX (x) =


0, if x ∈ X

∞, otherwise,

(A.65)

D(z, x) is a Bregman divergence, and ψ : Rn → R is m-strongly-convex w.r.t. the

p-norm which implies

D(z, x) ≥ D(x, x) + 〈D′(x, x), z − x〉+
m

2
||z − x||2p (A.66)

≥ m

2
||z − x||2p (A.67)

=
m

2
||z − x||22 = D̃(z, x), (A.68)

where the last step follows from the fact that ||y||d+a ≤ ||y||d for all a ≥ 0 and d > 0

along with our constraint that p ∈ [1, 2].

Let prox defined with D̃ be proxw, i.e., a prox operator with weakened divergence.

The proximal operator can be viewed as minimizing 〈∇F (x), z〉 with a penalty given

106

by 1
η̂
D(z, x) for deviating too far from x. Therefore, proxw(x) will be no closer to x

than prox(x). This implies

||xt − prox(xt)||q ≤ ||xt − proxw(xt)||q (A.69)

= ||xt − xt +
η̂

m
Ft(xt)||q (A.70)

≤ η̂

m
Lt. (A.71)

A.5.2 Lower Bounds

We use the following Lemma in building a lower bound for the path integral loss.

Lemma 3 (Prox Segment Lower Bound). The lower bound for the path integral∫
x̂t→xt〈F (z), dz〉 is further lower bounded as follows:

〈Ft(x̂t), xt − x̂t〉 ≥
(m
η̂
− βt

)
||x̂t − xt||2p, (A.72)

where m is the strong-convexity parameter of the Bregman divergence used to form

the proximal operator and βt is the smoothness coefficient for the map Ft.

Proof. Let G = g(xt, xt) − g(x̂t, xt) = 〈F (xt), xt〉 − 〈F (xt), x̂t〉 − 1
η̂
D(x̂t, xt) ≥ 0

where x̂t = prox(xt). Note that the minimization problem associated with prox(x),

minz∈X g(z, x), is a strongly-convex optimization problem over a convex set. Solu-

tions, x̂t, to this problem enjoy the property that the derivative of g at x̂t is in the

normal cone, C, at x̂t:

−∂g(z, xt)

∂z

∣∣∣
x̂t
∈ C(x̂t), (A.73)

C(x̂t) = {y ∈ Rn|〈y, x− x̂t〉 ≤ 0, ∀x ∈ X}, (A.74)

107

which, by definition of the normal cone, directly implies

〈−∂g(z, xt)

∂z

∣∣∣
x̂t
, x− x̂t〉 ≤ 0 (A.75)

〈F (xt) +
1

η̂

∂D(z, xt)

∂z

∣∣∣
x̂t
, x− x̂t〉 ≥ 0 (A.76)

=⇒ 〈F (xt), x− x̂t〉 ≥ −
1

η̂
〈D′(x̂t, xt), x− x̂t〉 (A.77)

where we have switched to a shorthand representation of the derivative in the last

step for the sake of exposition. This allows us to lower bound the gap G by

G = 〈F (xt), xt − x̂t〉 −
1

η̂
D(x̂t, xt) (A.78)

= −1

η̂

[
〈D′(x̂t, xt), x− x̂t〉+D(x̂t, xt)

]
. (A.79)

Revisiting the strong-convexity of D and swapping z and x gives

D(x, x) ≥ D(z, x) + 〈D′(z, x), x− z〉+
m

2
||z − x||2p (A.80)

0 ≥ D(z, x) + 〈D′(z, x), x− z〉+
m

2
||z − x||2p (A.81)

=⇒ D(x̂t, x) + 〈D′(x̂t, x), x− x̂t〉 ≤ −
m

2
||x̂t − x||2p. (A.82)

Plugging this back into the lower bound for G gives

G ≥ m

2η̂
||x̂t − x||2p. (A.83)

Rearranging gives 〈F (xt), xt − x̂t〉 = G+ 1
η̂
D(x̂t, xt). Therefore, we have

βt||x̂t − xt||2p ≥ ||Ft(x̂t)− Ft(xt)||q||x̂t − xt||p (A.84)

≥ 〈Ft(x̂t)− Ft(xt), x̂t − xt〉 (A.85)

=⇒ 〈Ft(x̂t), xt − x̂t〉 ≥ 〈Ft(xt), xt − x̂t〉 − βt||x̂t − xt||2 (A.86)

≥ G+
1

η̂
D(x̂t, xt)− βt||x̂t − xt||2 (A.87)

108

where the first lines follow from the Cauchy-Schwarz inequality for the dual norm

and the βt-smoothness property of Ft. Using the strong-convexity of D and then the

lower bound for G we have,

〈Ft(x̂t), xt − x̂t〉 ≥ G+
(m

2η̂
− βt

)
||x̂t − xt||2p (A.88)

≥
(m
η̂
− βt

)
||x̂t − xt||2p. (A.89)

Now let F eff
t (x) = (x− x̂t)mη̂ . Notice that in the unconstrained setting, F eff

t = Ft

while in the constrained setting F eff
t represents the component of Ft projected onto

the feasible set. We define this map because F eff (x) = 0 implies x is a fixed point of

the map Ft. In other work, F eff
t is referred to as the residue vector [25, 85, 86]. We

are now ready to derive a lower bound for the path integral loss:

f̂x∗(x) =
1

T

T∑
t=1

[∫
z:x∗→x̂t

〈Ft(z), dz〉+

∫
z:x̂t→x

〈Ft(z), dz〉
]

(A.90)

≥ 1

T

T∑
t=1

[
〈Ft(x∗), x̂t − x∗〉+ 〈Ft(x̂t), x− x̂t〉

]
(A.91)

=
1

T

T∑
t=1

[
〈Ft(x∗), x− x∗〉+ 〈Ft(x∗), x̂t − x〉+ 〈Ft(x̂t), x− x̂t〉

]
(A.92)

≥ 〈F (x∗), x− x∗〉︸ ︷︷ ︸
≥0

+
1

T

T∑
t=1

[
〈Ft(x∗), x̂t − x〉+

(m
η̂
− βt

)
||x̂t − x||2p

]
(A.93)

≥ 1

T

T∑
t=1

[
− ||Ft(x∗)||q||x̂t − x||p +

(m
η̂
− βt

)
||x̂t − x||2p

]
(A.94)

≥ 1

T

T∑
t=1

[
− ||Ft(x

∗)||q||F eff
t (x)||p

m
η̂ +

(m
η̂
− βt

)
||x̂t − x||22

]
(A.95)

≥ 1

T

T∑
t=1

[(
||F eff

t (x)||p − ||Ft(x∗)||q
)
||F eff

t (x)||p
η̂

m
− βt

η̂2

m2
L2
t

]
(A.96)

≥ 1

T

T∑
t=1

[(
||F eff

t (x)||p − ||Ft(x∗)||q
)
||F eff

t (x)||p
η̂

m
− βt

η̂2

m2
L2
t

]
. (A.97)

109

A.5.3 Upper Bounds

We are also able to obtain the following upper bound for the path integral loss:

f̂x∗(x) =
1

T

T∑
t=1

[∫
z:x∗→x̂t

〈Ft(z), dz〉+

∫
z:x̂t→x

〈Ft(z), dz〉
]

(A.98)

≤ 1

T

T∑
t=1

[
〈Ft(x̂t), x̂t − x∗〉+ 〈Ft(x), x− x̂t〉

]
(A.99)

=
1

T

T∑
t=1

[
〈Ft(x̂t), x− x∗〉+ 〈Ft(x̂t), x̂t − x〉+ 〈Ft(x), x− x̂t〉

]
(A.100)

=
1

T

T∑
t=1

[
〈Ft(x̂t), x− x∗〉+ 〈Ft(x)− Ft(x̂t), x− x̂t〉

]
(A.101)

≤ 1

T

T∑
t=1

[
〈Ft(x̂t), x− x∗〉+ ||Ft(x)− Ft(x̂t)||q||x− x̂t||p

]
(A.102)

≤ 1

T

T∑
t=1

[
〈Ft(x̂t), x− x∗〉+ βt||x− x̂t||2p

]
(A.103)

≤ 1

T

T∑
t=1

[
〈Ft(x̂t), x− x∗〉+

βtL
2
t

m2
η̂2
]
, (A.104)

where we leveraged the monotone path integral bounds in the first step, rearranged

terms, and then used Cauchy-Schwarz and the βt-smoothness of Ft.

A.5.4 OED and OMP Regret Bounds

We repeat the bounds adopted from the work of Shalev-Shwartz [2011] for conve-

nience.

Theorem 5. Let R be a (1/η)-strongly-convex function over X with respect to a norm

|| · ||. Assume that A :=OMP is run on the sequence of monotone maps, Ft, with the

link function

g(θ) = arg max
x∈X

(〈x, θ〉 −R(x)). (A.105)

110

Then, for all x∗ ∈ X ,

regretA(X) ≤ R(x∗)−min
v∈X

R(v) + (η +
βmax

m2
η̂2)

T∑
t=1

L2
t (A.106)

≤ 3

2
BL
√

2T for R(x) =
1

2η
||x||22, (A.107)

where ||x∗||2 ≤ B, ||Ft||q ≤ Lt, L
2 ≥ 1

T

∑
t L

2
t , βmax = maxt βt, η = B

L
√

2T
, and η̂ =

m
√

η
βmax

.

Proof. As we have shown previously,

regretA(t,T)
(X) ≤ 〈Ft(x̂t), xt − x∗〉+

βtL
2
t

m2
η̂2 (A.108)

(A.109)

The OMP algorithm is equivalent to running Follow the Regularized Leader (FTRL)

on the sequence of linear functions 〈F (x̂t), xt〉 with the regularization R(x). The

theorem now follows directly from Theorem 2.11 and Lemma 2.6 in the work of Shalev-

Shwartz [2011].

A.5.5 Combining Upper and Lower Bounds

Unfortunately, obtaining meaningful regret bounds is not as clean as in the sim-

pler setting of online convex optimization. This is because our path integral loss is

a function of our step size η̂. If we set η̂ to zero, then we can arbitrarily decrease

our loss without obtaining any real performance gains. We will demonstrate this

with an example later. To reiterate, our regret bound is only meaningful if minimiz-

ing regret implies improved performance with respect to some other, η̂-independent,

performance measure.

111

Lemma 4. Minimizing the path integral loss for monotone maps at a rate ∝ T−1/2

implies

||F eff
t (x)||p ≤ ||Ft(x∗)||q + CT−1/8 (A.110)

on average where C = (211/8)(βmaxBL
3)1/4 < 2.6(βmaxBL

3)1/4.

Proof. Rewriting the lower and upper bounds together, we see

1

T

T∑
t=1

[(
||F eff

t (x)||p − ||Ft(x∗)||q
)
||F eff

t (x)||p
η̂

m
− βt

η̂2

m2
L2
t

)]
(A.111)

≤f̂x∗(x) (A.112)

≤ 1

T

T∑
t=1

[
〈Ft(x̂t), x− x∗〉+

βtL
2
t

m2
η̂2
]
. (A.113)

Let P be defined as follows:

P =
1

T

T∑
t=1

[(
||F eff

t (x)||p − ||Ft(x∗)||q
) ||F eff

t (x)||p
m

. (A.114)

Let R(x) = 1
2η
||x||22. Rearranging the bounds and assuming the same FTRL regret

rate above imply that

P ≤ 1

T η̂

T∑
t=1

[
〈Ft(x̂t), x− x∗〉+ 2

βtL
2
t

m2
η̂2
]

(A.115)

≤ 1

T η̂

[B2

2η
+ (η +

2βmax

m2
η̂2)TL2

]
= P u. (A.116)

Taking derivatives with respect to η and η̂ and setting equal to zero gives:

112

∂P u

∂η
=

1

η̂

(
− B2

2η2
+ TL2

)
= 0 (A.117)

=⇒ η =
B

L
√

2T
(A.118)

∂P u

∂η̂
= − 1

η̂2

(B2

2η
+ ηTL2

)
+

2βmax

m2
TL2 = 0 (A.119)

= − 1

η̂2

(√2

2
BL
√
T +

√
2

2
BL
√
T
)

+
2βmax

m2
TL2 (A.120)

= − 1

η̂2

√
2BL
√
T +

2βmax

m2
TL2 = 0 (A.121)

=⇒ − 1

η̂2

B

L
√

2T
+
βmax

m2
= 0 = − η

η̂2
+
βmax

m2
(A.122)

=⇒ η̂ = m

√
η

βmax

(A.123)

=⇒ P ≤ 4

√
βmaxBL3

m(2T)1/4
= DT−1/4. (A.124)

Let ||F eff
t (x)||p = Ct||Ft(x∗)||q. Then,

=⇒ 1

m
(Ct − 1)Ct||Ft(x∗)||2q ≤ P (A.125)

=⇒ Ct ≤ 1 +
T−1/8

||Ft(x∗)||q

√
2mD → 1 at a rate ∝ T−1/8 (A.126)

=⇒ ||F eff
t (x)||p ≤ ||Ft(x∗)||q + T−1/8

√
2mD on average. (A.127)

To summarize, our algorithm minimizes regret at rate that implies that the average

norm of the effective vector field at each step is approaching the norm of the vector

field at optimality.

To demonstrate the importance of our choices for η and η̂, consider solving

V I(F (x) = Ax,Rn) where A = −A> with η = η̂ = T−1/2. Note that x∗ = 0 is

the unique solution to this problem. Then

113

xk+1 =
[
(1− ηη̂)I − ηA

]
xk = Jxk (A.128)

and the norm of the iterates change as

||xk+1||2 = x>k J
>Jxk =

[
(1− ηη̂)2 + η2

]
||xk||2 (A.129)

||xT ||2 =
[
(1− ηη̂)2 + η2

]T
||x0||2 = γT ||x0||2. (A.130)

In the limit as T → ∞, γT converges to 1
e
! Therefore, the naive algorithm does

not converge for this problem. On the other hand, if η = T−1/2 and η̂ = T−1/4,

then γT → 0 in the limit meaning, as expected, our proposed step size choice does

converge.

A.6 A Curl Bound for a Different Path Integral

The path integral loss presented in the main body of the thesis requires knowledge

of x∗. Ideally, we would like to observe some version of a loss in order to track progress

during training and gain more insights into the performance of our algorithm. Instead

of computing the path integral starting at x∗, we can consider starting at some other

reference point, ot, for which we have a good value estimate, i.e., f(ot) is known. Then

we can later measure our performance relative to x∗ by comparing two path integrals:

one that integrates from ot to x and one that integrates from ot to x∗. Using this new

definition, we can immediately derive a linear upper bound for the alternative loss as

follows:

falt(xt) =

∫ xt

ot

−
∫ x∗

ot

≤ 〈F (xt), xt − ot〉 − 〈F (ot), x
∗ − ot〉. (A.131)

114

ot
x*

xt

Figure A.1: Illustrative comparison of two-step,
∫ xt
ot
−
∫ x∗
ot

, to one-step loss,
∫ xt
x∗

.

In comparison, our original loss is,

f(xt) =

∫ xt

x∗
≤ 〈F (xt), xt − x∗〉 = 〈F (xt), xt − ot〉 − 〈F (xt), x

∗ − ot〉. (A.132)

Unfortunately, we cannot simplify the difference between the latter terms, 〈F (xt)−

F (ot), x
∗ − ot〉, and so it is not clear if one of these losses upper bounds the other.

However, we can bound the difference between the two losses using Stokes’ theorem

and bounds on F and its derivatives. The difference between the two losses is equal to

the magnitude of the path integral around the triangle in Figure A.1. By Whitney’s

extension of Stokes’ theorem to perimeters with corners [116],

|
∮
∂Σ

〈F, dx〉| = |
∫

Σ

∇× F ′ · dΣ| ≤ max
Σ
||∇ × F ′|| ·

∫
Σ

dA

≤ σmax(J − J>) · (Area of 4) (A.133)

where σmax(A) denotes the maximum singular value of matrix A, F ′ is the projection

of F onto the triangle 4, and Σ (∂Σ) is the two dimensional area (perimeter) formed

by the path around the triangle. The bound on the norm of the curl is proven in

Lemma 5 below. Note that if we set ot = x∗, the triangle collapses and the losses are

the same. Also, if we set ot = xt−1, the triangle collapses in the limit as T → ∞.

This is because ||xt − xt−1|| ≤ η
m
Lt and η ∝ T−1/2. Using ot = xt−1 is particularly

115

appealing because in many online settings, we have access to all historical play and

can compute an accurate estimate of the value of xt−1.

The bound outlined above applies to the path integral loss that we used for

strongly and strictly monotone maps. To bound the difference between path inte-

grals constructed for monotone fields, we need to consider the following difference:

f̂alt(xt)︷ ︸︸ ︷(∫
ot→x̂t

+

∫
x̂t→xt

)
−
(∫

ot→x̂∗t
+

∫
x̂∗t→x∗

)
−

f̂(xt)︷ ︸︸ ︷(∫
x∗→x̂t

+

∫
x̂t→x

)
(A.134)

=

∫
ot→x̂t

−
∫
x∗→x̂t

−
∫
x̂∗t→x∗

−
∫
ot→x̂∗

(A.135)

where we have omitted the integrands, 〈F (z), dz〉, to avoid clutter. Notice that these

four integrals trace out the path ot → x̂t → x∗ → x̂∗ → ot. In order to use Stokes’

theorem, we need to form a 2-manifold over the perimeter formed by the path. We

can construct a surface manifold using two triangles: (ot, x̂t, x
∗) and (ot, x̂

∗
t , x
∗). The

area of the second triangle is O(η̂) because ||x̂∗t −x∗|| ≤
η̂
m
Lt. In addition, the vertices

of the first triangle approach (ot, x, x
∗) as η̂ goes to zero.

Lemma 5 (Curl Bound). The curl of the vector field over any 2-manifold is bounded

by the maximum singular value of two times the skew-symmetric part of the Jacobian:

||∇ × F ′||2 ≤ σmax(J − J>).

Proof. The proof outline is as follows. The triangle in Figure A.1 defines a 2-D plane

in an n-dimensional ambient space. We are interested in the path integral around the

triangle. Each element of the path integral consists of an inner product of the field F

with a differential vector along the curve. Any components of F that are orthogonal to

this differential vector evaluate to zero. The triangle is 2-D hence, its perimeter is 2-

D, which means we may consider a projection of F , F:2, onto the 2-D plane defined by

the triangle. We can think of this projection as a rotation of F , FR = R ·F , followed

by a projection in which we extract the first two dimensions of F:2 = Π∆(FR). The

116

curl is defined for 3-D so we will actually append a third dimension whose component

is identically zero. Define F ′ to be this augmented projection of the field.

Using the fact that ∇×F ′ = (J − J>)F ′ results in a vector that is perpendicular

to F ′, we find that

(∇× F ′)× F ′ = (J(F ′)− J(F ′)>)F ′ (A.136)

= ||∇ × F ′||2||F ′||2 sin θn = ||∇ × F ′||2||F ′||2n. (A.137)

We can then bound the norm of the curl by recognizing the following as the

induced 2-norm of a matrix:

||∇ × F ′||2 = ||(J(F ′)− J(F ′)>)F ′||2/||F ′||2 (A.138)

≤ σmax(J(F ′)− J(F ′)>) (A.139)

= ||J(F ′)− J(F ′)>||2 (A.140)

= ||J(F:2)− J(F:2)>||2 because J(F ′) is simply (A.141)

J(F:2) augmented with zeros along

the third row and third column.

≤ ||J(FR)− J(FR)>||2 because the principal (A.142)

submatrix just removes entries.

= ||R(J(F)− J(F)>)||2 by linearity of the Jacobian. (A.143)

≤ ||R||2||J(F)− J(F)>||2 Lp induced norms (p =∞) (A.144)

are submultiplicative.

≤ ||J(F)− J(F)>||2 rotation matrix has unit (A.145)

spectral bound.

= σmax(J − J>) =
√
λmax(A>A) where A = J − J>. (A.146)

117

Figure A.2: Illustrative comparison of auto-welfare to a game-agnostic loss. Online
optimization provides theory for regret measured only along the edges of the square
(axis aligned), while online monotone equilibration additionally measures regret along
diagonals (any line).

A.7 Online Monotone Games and Auto-Welfare

In this section, we define monotone games and auto-welfare.

Definition 3 (Monotone Game). A game is monotone if the map, F : X → Rn,

formed by concatenating the subgradients of all N player cost functions, f (i)(x), is

monotone. More concretely, let F = [z(1), . . . , z(N)] where z(i) ∈ ∂x(i)f (i) is any sub-

gradient of f (i) w.r.t. x(i). A game is monotone if F satisfies Equation (1.26).

Essentially, a game is monotone if gradient descent with an infinitesimally small

step size, e.g., GIGA [125], does not cause the player strategies to diverge away from

the equilibrium point. In online monotone games, an adversary may choose a new

monotone game for the players to play at every time step, i.e., f (i)(x) becomes f
(i)
t (x).

We begin our discussion of regret with a trivial application of online optimization

to games. Online optimization provides theory for bounding the regret of an algo-

rithm’s prediction, xt, when comparing to a baseline, x∗, chosen in retrospect. In

other words, if we were to go back in time and play this baseline against the same

exact sequence of environments, how much better would we do? To measure this, we

can sum up the differences between the algorithm’s loss and the baseline loss at each

time step, t, as in OCO (see Algorithm 1).

118

In order to use this theory in a game, we simply focus our attention on one player

and treat the rest of the players as part of the adversarial environment. In this way,

online optimization can provide regret bounds for each player if we imagine replaying

the game but with all other players forced to replay the same actions as before. This

is largely unsatisfying given that it seems to have taken the game aspect out of the

game. Ideally, our regret measure would leave the game environment intact and allow

all players to change their actions. In this regard, welfare regret is far more satisfying

because it measures the sum of all player payoffs with respect to a baseline that

allows all players to change their actions. Unfortunately, bounding welfare regret

often requires properties like smoothness.

As a compromise, we propose auto-welfare. Consider player 1 in an N -player

game. Player 1 receives a payoff or reward for changing her strategy, however, her

reward depends on all other player adjustments as well. Player 1 never knows how

the other N−1 players are going to change their strategies, so it is reasonable for her

to measure the portion of her reward that is due to her strategy change alone. Such a

measurement provides valuable feedback on her decision to update her strategy, and

this measurement is exactly what auto-welfare sums for all players. Therefore, auto-

welfare can be thought of as measuring how “satisfied” the players as a whole are with

their decision making given that they only have control over themselves. In contrast,

welfare measures how “satisfied” the players as a whole are with the outcome of the

game.

We can compute auto-welfare, W a, with a path integral,

W a
t (xt) = W a

ot +

∫
x:ot→xt

〈−Ft(x), dx〉, (A.147)

where Ft(x) is an output of the game map (see Definition 3), ot is any reference

vector with known auto-welfare, W a
ot , and x : ot → xt is the straight line path from ot

to xt through X . Figure A.2 illustrates the flexibility auto-welfare provides over the

119

game-agnostic loss provided by online optimization theory. This formulation has been

considered for converting symmetric VIs into equivalent optimization problems [2, 46],

however, to our knowledge has not been leveraged for asymmetric VIs, which represent

a wider class of games.

We can rewrite auto-welfare as follows to reveal its relationship to standard wel-

fare, W :

W a
t (xt) = W a

ot +

∫
x:ot→xt

〈−Ft(x), dx〉 (A.148)

= W a
ot +

N∑
i=1

∫
x:ot→xt

〈−∂f (i)
t,i (x), dx(i)〉 (A.149)

= W (xt)−
N∑
i=1

N∑
j 6=i

∫
x:ot→xt

〈−∂f (i)
t,j (x), dx(j)〉︸ ︷︷ ︸

i’s reward due to j’s strategy change

(A.150)

where ∂f
(i)
t,j (x) is a subgradient of agent i’s expected loss function with respect to

agent j’s strategy, x
(j)
t , evaluated at x. Therefore, W a

t (xt) gives welfare minus the

rewards resulting from intra-team inefficiencies. We call this auto-welfare because it

sums the portions of the player’s welfare that can be attributed to its own strategy.

A.8 Algorithmic Game Theory: A Venn Diagram

Here, we consider cost-minimization games where Ci(s) is player i’s cost function

and C(s) =
∑K

i=1Ci(s). Player i’s strategy set is si and s−i represents the strategy

sets of all players except player i. The results of this section are summarized in

Table 2.1 in the main body of the thesis.

Definition 4 (Smooth Game). A cost-minimization game is (λ,µ)-smooth if for

every two outcomes s and s∗,

K∑
i=1

Ci(s
∗
i , s−i) ≤ λ · C(s∗) + µ · C(s). (A.151)

120

Definition 5 (Convex Game). A cost-minimization game is convex if Ci(si, s−i) is

convex in si ∀i.

Definition 6 (Monotone Game). A cost-minimization game is monotone if the game

dynamics are monotone. Here, we assume all players are running OMP, i.e.,

F =
(∇s0C0

···
∇sK

CK

)
. (A.152)

Monotonicity requires that the symmetrized Jacobian of F be positive semidefinite:

J + J> � 0.

Definition 7 (Socially-Convex Game). A cost-minimization game is socially-convex

if

1. There exists λi > 0 such that
∑K

i=1 λi = 1, g(s) =
∑K

i=1 λiCi(s) is convex in s,

and

2. Ci(si, s−i) is concave in s−i ∀i.

The definition was originally written for concave.

Theorem 6 (Monotone =⇒ Convex). If a game is monotone, it is also convex.

Proof. For each player i, we show that Ci(si, s−i) is convex in si for any fixed s−i

(i.e., s−i = s′−i). The associated map is given by Equation (A.152). Let Xi := {s, s′ ∈

X s.t. s−i = s′−i}. Starting with the definition of monotonicity, we have

121

〈F (s)− F (s′), s− s′〉 ≥ 0 ∀ s, s′ ∈ X (A.153)

=⇒ 〈F (s)− F (s′), s− s′〉 ≥ 0∀ s, s′ ∈ Xi (A.154)

=
∑
j

〈Fj(s)− Fj(s′), sj − s′j〉 ≥ 0 ∀ s, s′ ∈ Xi (A.155)

=
∑
j 6=i

〈Fj(s)− Fj(s′), sj − s′j︸ ︷︷ ︸
0

〉 ≥ 0 ∀ s, s′ ∈ Xi (A.156)

+ 〈Fi(s)− Fi(s′), si − s′i〉 ≥ 0 ∀ s, s′ ∈ Xi (A.157)

= 〈∇Ci(s)−∇Ci(s′), si − s′i〉 ≥ 0 ∀ s, s′ ∈ Xi (A.158)

which is the definition of convexity, so Ci is convex in si.

Theorem 7 (Socially-Convex =⇒ Convex). Lemma 2.2 in the work of Even-Dar

et al. [2009] with convex swapped for concave.

Theorem 8 (Socially-Convex =⇒ λ−Monotone). A game that is socially-convex

with parameters λ implies a scaling of the game with the same parameters that is

monotone (credit to Peng Shi).

Proof. Let C ′i = λiCi and let J ′ be the Jacobian of the map, F ′, corresponding to C ′i

(see Equation (A.152)). In addition, define the following matrices

1. D such that Dii = λi
∂2Ci
∂s2i

and Dij = 0 ∀i 6= j.

2. Gk is such that ∀i Gk
ik = Gk

ki = 0 and ∀i 6= k, j 6= k, Gk
ij = λk

∂2Ck
∂sisj

.

3. H is the Hessian of g(s) =
∑

k λkCk(s) (i.e., Hij =
∑

k λk
∂2Ck
∂sisj

).

Note that D, −Gk, and H are all positive semidefinite matrices. This follows from

the fact that player costs are convex in their own strategies, concave in other players’

strategies, and the socially-convex condition respectively.

122

Continuing the proof, for every i 6= j,

(D −
∑
k

Gk +H)ij = 0−
∑
k 6=i,j

λk
∂2Ck
∂sisj

+
∑
k

λk
∂2Ck
∂sisj

(A.159)

= λi
∂2Ci
∂sisj

+ λj
∂2Cj
∂sisj

(A.160)

= (J ′ + J
′T)ij. (A.161)

Moreover, for every i = j,

(D −
∑
k

Gk +H)ii =
∂2Ci
∂s2

i

−
∑
k 6=i

λk
∂2Ck
∂s2

i

+
∑
k

λk
∂2Ck
∂s2

i

(A.162)

= 2λi
∂2Ci
∂s2

i

(A.163)

= (J ′ + J
′T)ii. (A.164)

Therefore, (J +J
′T) = D−

∑
kG

k +H. Each of the matrices (D,−Gk, H) is positive

semidefinite, therefore (J + J
′T) � 0, hence F ′ is monotone.

A.8.1 a. Smooth

The following cost-minimization game is (1
2
, 1

2
)-smooth:

C1 = C2 = − cos(r)− cos(c). (A.165)

Proof.

K∑
i=1

Ci(s
∗
i , s−i) = − cos(r∗)− cos(c)− cos(r)− cos(c∗) (A.166)

≤ λ · C(s∗) = − cos(r∗)− cos(c∗) (A.167)

+ µ · C(s) = − cos(r)− cos(c) (A.168)

= − cos(r∗)− cos(c)− cos(r)− cos(c∗). (A.169)

123

This game is not convex, therefore, it is neither monotone nor socially-convex.

A.8.2 b. Smooth, Convex

Consider the following cost-minimization game:

C1 = r2(sin(c) + 1.25) (A.170)

C2 = c2(sin(r) + 1.25). (A.171)

This game is (10, 0)-smooth.

Proof.

K∑
i=1

Ci(s
∗
i , s−i) = r∗2(sin(c) + 1.25) + c∗2(sin(r) + 1.25) (A.172)

≤ 2.25(r∗2 + c∗2) (A.173)

λ · C(s∗) = 10[r∗2(sin(c∗) + 1.25) + c∗2(sin(r∗) + 1.25)] (A.174)

≥ 2.5(r∗2 + c∗2) (A.175)

2.25(r∗2 + c∗2) ≤ 2.5(r∗2 + c∗2). (A.176)

Clearly, C1 is convex in r and C2 is convex in c, therefore the game is convex.

The corresponding map is not monotone:

124

Proof.

F =
(2r(sin(c)+1.25)

2c(sin(r)+1.25)

)
(A.177)

J = 2
(sin(c)+1.25 r cos(c)

c cos(r) sin(r)+1.25

)
(A.178)

Js = 2
(sin(c)+1.25 r

2
cos(c)+ c

2
cos(r)

r
2

cos(c)+ c
2

cos(r) sin(r)+1.25

)
(A.179)

Js

∣∣∣
r=c=−π

4

= 2
(−√2

2
+1.25 −π

4
cos(−π

4
)

−π
4

cos(−π
4

) −
√
2

2
+1.25

)
��� 0. (A.180)

C1 is not concave with respect to c. Likewise, C2 is not concave with respect to

r. Therefore, this game is not socially-convex.

A.8.3 c. Smooth, Convex, Monotone

Consider the following cost-minimization game:

C1 = r2 + c2 (A.181)

C2 = r2 + c2. (A.182)

This game is (1
2
, 1

2
)-smooth:

Proof.

K∑
i=1

Ci(s
∗
i , s−i) = r∗2 + c2 + r2 + c∗2 (A.183)

λ · C(s∗) = r∗2 + c∗2 (A.184)

µ · C(s) = r2 + c2 (A.185)

r∗2 + c2 + r2 + c∗2 ≤ r∗2 + c2 + r2 + c∗2. (A.186)

125

Clearly, C1 is convex in r and C2 is convex in c, therefore the game is convex.

The corresponding map is monotone:

Proof.

F =
(

2r
2c

)
(A.187)

J = Js =
(

2 0
0 2

)
� 0. (A.188)

C1 is not concave with respect to c. Likewise, C2 is not concave with respect to

r. Therefore, this game is not socially-convex.

A.8.4 d. Smooth, Convex, Socially-Convex

Consider the following cost-minimization game (inspired by modified Tail Drop

policy in routing networks) over (r, c) ∈ (0, 1]2 = X :

C1 = −1

2
(

r

r + c
) (A.189)

C2 = − c

r + c
. (A.190)

This game is (1
2
,−1)-smooth:

Proof.

K∑
i=1

Ci(s
∗
i , s−i) = −1

2
(

r∗

r∗ + c
)− c∗

r + c∗
(A.191)

≤ 0 over X (A.192)

µ · C(s) = 1− 1

2
(

r

r + c
) ≥ 1

2
(A.193)

λ · C(s∗) = −1

2
(1− 1

2
(

r∗

r∗ + c∗
)) ≥ −1

2
(A.194)

K∑
i=1

Ci(s
∗
i , s−i) ≤ 0 ≤ µ · C(s∗) + λ · C(s∗). (A.195)

126

C1 is convex in r over X and C2 is convex in c over X , therefore the game is

convex:

Proof.

∂2C1

r2
=

c

(r + c)3
≥ 0 over X (A.196)

∂2C2

c2
=

2r

(r + c)3
≥ 0 over X . (A.197)

The corresponding map is not monotone:

Proof.

F = − 1

(r + c)2

(c
2
r

)
(A.198)

J =
1

(r + c)3

(
c c−r

2
r−c 2r

)
(A.199)

Js =
1

(r + c)3

(c r−c
4

r−c
4

2r

)
(A.200)

Det(Js) = 2rc− 1

16
(r − c)2 (A.201)

Det(Js)|r=0.01,c=1 = −0.041 ≤ 0. (A.202)

The determinant of Js is negative over a subset of the domain (e.g., r ≤ 0.01, c = 1),

therefore, Js is not positive semidefinite. Hence, F is not monotone.

Let λ1 = 2
3

and λ2 = 1
3
. Then λ1C1 + λ2C2 = −1

3
, which is convex in (r, c). Also,

C1 is concave with respect to c and C2 is concave with respect to r, therefore, this

game is socially-convex:

127

Proof.

∂2C1

∂c2
= − r

(r + c)3
≤ 0 over X (A.203)

∂2C2

∂r2
= − 2c

(r + c)3
≤ 0 over X . (A.204)

A.8.5 e. Smooth, Convex, Monotone, Socially-Convex

Consider the following cost-minimization game:

C1 = r (A.205)

C2 = c. (A.206)

This game is (1, 0)-smooth:

Proof.

K∑
i=1

Ci(s
∗
i , s−i) = r∗ + c∗ (A.207)

λ · C(s∗) = r∗ + c∗ (A.208)

r∗ + c∗ ≤ r∗ + c∗. (A.209)

Clearly, C1 is convex in r and C2 is convex in c, therefore the game is convex.

The corresponding map is monotone:

128

Proof.

F =
(

1
1

)
(A.210)

J = Js =
(

0 0
0 0

)
� 0. (A.211)

Let λ1 = λ2 = 1
2
. Then λ1C1 + λ2C2 = 1

2
(r + c), which is convex in (r, c). Also,

C1 is concave with respect to c and C2 is concave with respect to r, therefore, this

game is socially-convex.

A.8.6 f. Convex

Consider the following cost-minimization game:

C1 = r2 +
r

c2 + 1
4

− 9

5
c (A.212)

C2 = c2 +
c

r2 + 1
4

− 9

5
r. (A.213)

This game is not smooth:

Proof. Consider (r, c) = (0, 0) and (r∗, c∗) = (1, 1).

K∑
i=1

Ci(s
∗
i , s−i) = 10 (A.214)

µ · C(s) = 0 (A.215)

λ · C(s∗) = 0 (A.216)

10 ��≤ 0. (A.217)

129

C1 is convex in r and C2 is convex in c, therefore the game is convex.

The corresponding map is not monotone:

Proof.

F =
(2r+ 1

c2+1
4

2c+ 1

r2+1
4

)
(A.218)

J =
(2 − 2c

(c2+1
4)2

− 2r

(r2+1
4)2

2

)
(A.219)

Js =
(2 − c

(c2+1
4)2
− r

(r2+1
4)2

− r

(r2+1
4)2
− c

(c2+1
4)2

2

)
(A.220)

Js

∣∣∣
r=c= 1

4

=
(

2 −5.12
−5.12 2

)
��� 0. (A.221)

This game is not socially-convex because C1 is not concave with respect to c and

likewise for C2 and r. For example, C1(r = 1, c) = 1 + 1
c2+ 1

4

− 9
5
c is not concave with

respect to c.

A.8.7 g. Convex, Monotone

Consider the following cost-minimization game:

C1 = r2 + c2 − 2 (A.222)

C2 = r2 + c2 + r + c− 2. (A.223)

This game is not smooth:

130

Proof. Consider (r, c) = (1,−1) and (r∗, c∗) = (−1, 1).

K∑
i=1

Ci(s
∗
i , s−i) = 2 (A.224)

µ · C(s) = 0 (A.225)

λ · C(s∗) = 0 (A.226)

2 ��≤ 0. (A.227)

C1 is convex in r and C2 is convex in c, therefore the game is convex.

The corresponding map is monotone:

Proof.

F =
(

2r
2c+1

)
(A.228)

J = Js =
(

2 0
0 2

)
� 0. (A.229)

This game is not socially-convex because C1 is not concave with respect to c and

likewise for C2 and r.

A.8.8 h. Convex, Socially-Convex

Consider the following cost-minimization game (inspired by modified Tail Drop

policy in routing networks) over (r, c) ∈ (0, 1]2 = X :

C1 = −1

2
(

r

r + c
) +

3

4
(A.230)

C2 = − c

r + c
. (A.231)

This game is not smooth:

131

Proof. Consider (r, c) = (1, 1) and (r∗, c∗) = (1
2
, 1

2
).

K∑
i=1

Ci(s
∗
i , s−i) =

1

4
(A.232)

µ · C(s∗) = 0 (A.233)

λ · C(s∗) = 0 (A.234)

1

4 ��≤ 0. (A.235)

C1 is convex in r over X and C2 is convex in c over X , therefore the game is

convex:

Proof.

∂2C1

r2
=

c

(r + c)3
≥ 0 over X (A.236)

∂2C2

c2
=

2r

(r + c)3
≥ 0 over X . (A.237)

The corresponding map is not monotone:

Proof.

F = − 1

(r + c)2

(c
2
r

)
(A.238)

J =
1

(r + c)3

(
c c−r

2
r−c 2r

)
(A.239)

Js =
1

(r + c)3

(c r−c
4

r−c
4

2r

)
(A.240)

Det(Js) = 2rc− 1

16
(r − c)2 (A.241)

Det(Js)|r=0.01,c=1 = −0.041 ≤ 0. (A.242)

132

The determinant of Js is negative over a subset of the domain (e.g., r ≤ 0.01, c = 1),

therefore, Js is not positive semidefinite. Hence, F is not monotone.

Let λ1 = 2
3

and λ2 = 1
3
. Then λ1C1 + λ2C2 = 1

6
, which is convex in (r, c). Also,

C1 is concave with respect to c and C2 is concave with respect to r, therefore, this

game is socially-convex:

Proof.

∂2C1

∂c2
= − r

(r + c)3
≤ 0 over X (A.243)

∂2C2

∂r2
= − 2c

(r + c)3
≤ 0 over X . (A.244)

A.8.9 i. Convex, Monotone, Socially-Convex

Consider the following cost-minimization game:

C1 = r2 − 1 (A.245)

C2 = c2 + r + c− 1. (A.246)

This game is not smooth:

Proof. Consider (r, c) = (1,−1) and (r∗, c∗) = (−1, 1).

K∑
i=1

Ci(s
∗
i , s−i) = 2 (A.247)

µ · C(s) = 0 (A.248)

λ · C(s∗) = 0 (A.249)

2 ��≤ 0. (A.250)

133

C1 is convex in r and C2 is convex in c, therefore the game is convex.

The corresponding map is monotone:

Proof.

F =
(

2r
2c+1

)
(A.251)

J = Js =
(

2 0
0 2

)
� 0. (A.252)

Let λ1 = λ2 = 1
2
. Then λ1C1 + λ2C2 = 1

2
(r2 + c2 + r + c − 2), which is convex

in (r, c). Also, C1 is concave with respect to c and C2 is concave with respect to r,

therefore, this game is socially-convex.

A.9 Concave Games

Several well known concave (utility) games are (convex loss) monotone. We test

the following games for monotonicity and interpret the path integral loss over their

fields.

A.9.1 Linear Cournot Competition

In linear Cournot competition, N firms compete for customers by adjusting the

quantity of goods they produce, xi. Firms pay a cost for producing those goods,

ci(xi), which is assumed to be a convex function in xi. The prices for goods are set

by the consumer demand markets according to a price function, p(x) = a− b
∑

k xk,

with a, b > 0. The firms attempt to maximize their utility or profit functions, ui(x) =

xip(x) − ci(xi). Here, we show that the map associated with the game, F (x) =

{−∂u0
∂x0
, . . . ,−∂uN

∂xN
}, is monotone.

134

First we derive the first and second partial derivatives:

∂ui
∂xi

= p(x)− bxi −
∂ci
∂xi

(A.253)

∂2ui
∂x2

i

= −2b− ∂2ci
∂x2

i

(A.254)

∂2ui
∂xixj

= −b. (A.255)

These derivatives, in turn, define the Jacobian, Jac(F), which can be decomposed

into a constant matrix with all entires equal to b and a diagonal matrix consisting

of b + ∂2ci
∂x2i

. A constant matrix with positive entries b is rank-1 with eigenvalues

{Nb} + {0}N−1. The cost functions, ci, are assumed to be convex, therefore, the

diagonal matrix is positive-definite. This implies that the sum of the two symmetric

matrices is positive definite. It follows that F is monotone.

Let v(t) = o+ (x− o)t and dv = (x− o)dt. Then the path integral over −F is

135

∫
v:o→x

〈−F (v), dv〉 =

∫ 1

0

∑
i

(a− bvi(t)− b
∑
k

vk(t))(xi − oi)dt−
∑
i

(ci(x)− ci(o))

(A.256)

=
∑
i

(xi − oi)
∫ 1

0

(a− bvi(t)− b
∑
k

vk(t))dt−
∑
i

ci(x) (A.257)

=
∑
i

(xi − oi)
∫ 1

0

(a− boi − b(xi − oi)t− b
∑
k

ok + (xk − ok)t)dt

−
∑
i

(ci(x)− ci(o)) (A.258)

=
∑
i

(xi − oi)(at− boit− b(xi − oi)
t2

2
− b
∑
k

okt+ (xk − ok)
t2

2
)
∣∣∣1
0

−
∑
i

(ci(x)− ci(o)) (A.259)

=
∑
i

(xi − oi)(a− boi −
b

2
(xi − oi)− b

∑
k

ok +
1

2
(xk − ok))

−
∑
i

(ci(x)− ci(o)) (A.260)

=
∑
i

(xi − oi)(a− b
oi + xi

2
− b
∑
k

ok + xk
2

)−
∑
i

(ci(x)− ci(o))

(A.261)

=
∑
i

xip(zi)− ci(x)−
∑
i

oip(zi)− ci(o) (A.262)

where zi =
1

2
(oi + xi +

∑
k

ok + xk).

So auto-welfare is calculating profits with player specific prices. Specifically, each

player’s price is set as a deviation from the average supply of o and x. If o is set

to the origin, zi is half the total market supply except with player i’s supply at full.

More generally, if player i chooses to flood the market with good, xi, auto-welfare

computes its contribution to the sum with a lower price point.

136

A.9.2 Linear Resource Allocation

In a resource allocation game, N users share a communication channel with finite

capacity (e.g., C = 1). Each user i submits a bid, xi ∈ [ε > 0, 1], to the communication

network which then allocates a fraction of the communication channel to each user

according an allocation function, Mi(x) = xi/
∑

k xk. Each user plays to maximize

its utility, ui(x) = ψi(Mi(x))−αixi, with αi > 0. Here, we consider a simplified value

function, ψi(z) = βz, with β > 0 and show that the map associated with the game,

F (x) = {−∂u0
∂x0
, . . . ,−∂uN

∂xN
}, is monotone.

First we derive the first and second partial derivatives:

∂Mi(x)

∂xi
=

1∑
k xk

[
1− xi∑

k xk

]
(A.263)

∂Mi(x)

∂xj
=

1∑
k xk

[
0− xi∑

k xk

]
(A.264)

∂2Mi(x)

∂x2
i

= − 1

(
∑

k xk)
2

[
2− 2xi∑

k xk

]
(A.265)

∂2Mi(x)

∂xixj
= − 1

(
∑

k xk)
2

[
1− 2xi∑

k xk

]
(A.266)

∂2ui
∂x2

i

= β
∂2Mi(x)

∂x2
i

(A.267)

∂2ui
∂xixj

= β
∂2Mi(x)

∂xixj
. (A.268)

These derivatives, in turn, define the Jacobian, Jac(F), which can be decomposed

into a rank-1 matrix, M , with constant rows and an identity matrix, IN . Let zi =

xi/
∑

k xk ∈ (0, 1]:

Jac(F)ij =
β

(
∑

k xk)
2︸ ︷︷ ︸

≥0

[
1− 2zi︸ ︷︷ ︸
Mij

+ I(i = j)︸ ︷︷ ︸
IN

]
. (A.269)

We can prove Jac(F) is monotone by showing 1
2
(Jac(F) + Jac(F)>) � 0. As a first

step, we’ll lower bound the eigenvalues of a symmetrized M :

137

M
(s)
ij =

1

2
(M +M>)ij (A.270)

= 1− (zi + zj) is at most rank-2 (A.271)

=⇒ λ(M (s)) = {λlo, λhi}+ {0}N−2 (A.272)

Tr(M (s)) = λlo + λhi = N − 2 (A.273)

||M (s)||1 = ||M (s)||∞ = |1− 2zi|+
∑
j 6=i

|1− (zi + zj)| (A.274)

= |1− 2zi|+
∑
j 6=i

1− (zi + zj) (A.275)

and zi, zj > ε,
∑
k

zk = 1 =⇒ zi + zj < 1

= |1− 2zi|+ (N − 2)(1− zi) ≤ N − 1 (A.276)

ρ(M (s)) = ||M (s)||2 ≤
√
||M (s)||1||M (s)||∞ = N − 1 Holder’s inequality

(A.277)

Assume minλ(M (s)) = λlo < −1 =⇒ maxλ(M (s)) = λhi > N − 1 contradicts ρ(M (s))

(A.278)

=⇒ minλ(M (s)) ≥ −1. (A.279)

The eigenvalues of M (s) are lower bounded by −1, therefore, the eigenvalues of the

sum of M (s) and an identity matrix are lower bounded by 0:

J (s) =
1

2
(Jac(F) + Jac(F)2) =

β

(
∑

k xk)
2︸ ︷︷ ︸

≥0

[
M (s) + 1N

]
(A.280)

=⇒ minλ(J (s)) ≥ 0 (A.281)

=⇒ F is monotone
√
. (A.282)

Next, we’ll compare welfare and auto-welfare. For the moment, consider welfare

with αi = 0:

138

W =
∑
i

ui = β
∑
i

xi∑
k xk

= β. (A.283)

Notice that without αi, welfare regret,
∑

tW (xt) −W (x∗), is identically zero and is

a pointless quantity to maximize. If we include αi,

W =
∑
i

ui = β −
∑
i

αixi, (A.284)

whose maximizer has a simple closed-form solution for any αi > 0: xi = ε. This

result is independent of the parameters of the utility functions, β and αi. Next, we’ll

compute auto-welfare to contrast. Let v(t) = o + (x − o)t and dv = (x − o)dt. The

critical component of auto-welfare is the path integral. Then

∫
v:o→x

〈−F (v), dv〉 =

∫ 1

0

∑
i

(β∑
k vk(t)

[
1− vi(t)∑

k vk(t)

]
− αi

)
(xi − oi)dt (A.285)

=
∑
i

∫ 1

0

β∑
k vk(t)

[
1− vi(t)∑

k vk(t)

]
(xi − oi)dt−

∑
i

∫ 1

0

αi(xi − oi)dt

(A.286)

=
∑
i

∫ 1

0

β(xi − oi)∑
k ok + (xk − ok)t

[
1− oi + (xi − oi)t∑

k ok + (xk − ok)t

]
dt−

∑
i

αi(xi − oi)

(A.287)

=
∑
i

∫ 1

0

β(xi − oi)∑
k ok + t

∑
k(xk − ok)

[
1− oi + t(xi − oi)∑

k ok + t
∑

k(xk − ok)

]
dt

−
∑
i

αi(xi − oi) (A.288)

=
∑
i

β(xi − oi)
∫ 1

0

1

so + t(sx − so)

[
1− oi + t(xi − oi)

so + t(sx − so)

]
dt−

∑
i

αi(xi − oi).

(A.289)

Breaking apart the left integrand, we first compute the following:

139

∫ 1

0

1

so + t(sx − so)
dt =

ln(so + t(sx − so))
sx − so

∣∣∣1
0

=
ln(sx/so)

sx − so
. (A.290)

We’ll use integration by parts on the other part. Let u = oi + t(xi − oi), dv =

(so + t(sx − so))−2dt, v = − 1
sx−so (so + t(sx − so))−1, and du = xi − oidt. Then

∫ 1

0

oi + t(xi − oi)
(so + t(sx − so))2

dt =

∫ 1

0

udv = uv
∣∣∣1
0
−
∫ 1

0

vdu (A.291)

uv
∣∣∣1
0

= − oi + t(xi − oi)
(sx − so)(so + t(sx − so))

∣∣∣1
0

(A.292)

=
oi

so(sx − so)
− xi
sx(sx − so))

(A.293)

−
∫ 1

0

vdu =

∫ 1

0

1

sx − so
(so + t(sx − so))−1(xi − oi)dt (A.294)

=
xi − oi
sx − so

∫ 1

0

1

so + t(sx − so)
dt (A.295)

=
xi − oi
sx − so

ln(sx/so)

sx − so
. (A.296)

Combining the two results, we find

∫
v:o→x

〈−F (v), dv〉 =
∑
i

β(xi − oi)
[ln(sx/so)

sx − so
(1− xi − oi

sx − so
) +

xi
sx(sx − so)

− oi
so(sx − so)

]
−
∑
i

αi(xi − oi) (A.297)

=
∑
i

β
xi − oi
sx − so

[
ln(sx/so)(1−

xi − oi
sx − so

) +
xi
sx
− oi
so

]
−
∑
i

αi(xi − oi)

(A.298)

= β ln(sx/so)
∑
i

xi − oi
sx − so

− β ln(sx/so)
∑
i

(
xi − oi
sx − so

)2

+ β
∑
i

xi − oi
sx − so

[xi
sx
− oi
so

]
−
∑
i

αi(xi − oi) (A.299)

= β ln(sx/so)
(

1− ||x− o||
2
2

(sx − so)2

)
+ β

∑
i

xi − oi
sx − so

[xi
sx
− oi
so

]
−
∑
i

αi(xi − oi).

(A.300)

140

Let W a
o = 0 and o = x∗, then

W a(x) = β ln(sx/sx∗)
(

1− ||x− x
∗||22

(sx − sx∗)2

)
+ β

∑
i

xi − x∗i
sx − sx∗

[xi
sx
− x∗i
sx∗

]
−
∑
i

αi(xi − x∗i).

(A.301)

Finding a closed-form solution for a global optimizer of Equation (A.301) seems

daunting not to mention the fact that the optimizer, x∗, appears in the optimization

function. Fortunately, Theorem 4 states that a global optimizer of Equation (A.301)

is also a solution the corresponding VI(F,X = [ε, 1]N). If we assume x = x∗ lies in

the interior of X , then F (x∗) = 0:

F (x) = β
1∑
k xk

(1− xi∑
k xk

)− αi = 0 =⇒ xi = sx(1− αi
sx
β

) (A.302)

sx =
∑
i

xi = sx
∑
i

(1− αi
sx
β

) =⇒ sx

[∑
i αi
β

sx + (1−N)
]

= 0 (A.303)

=⇒ sx = �0 or
β(N − 1)∑

i αi
. (A.304)

Combining the two results, we find that the global optimizer is

x∗i =
β(N − 1)∑

k αk

(
1− αi∑

k αk
(N − 1)

)
. (A.305)

As the cost coefficients, αi, grow relative to the revenue coefficients, β, the op-

timal bid size drops. Also, as the number of users, N , increases, the optimal bid

size increases, albeit with diminishing returns. Hence, auto-welfare has a rich depen-

dence on the utility parameters and number of users, which is very different from the

complete independence given by welfare.

141

The linear lower bound on auto-welfare regret is given by

regretWa = −regret1 ≥ 〈−F (x), x− x∗〉 (A.306)

=
∑
i

[
βγi

xi∑
k xk
− αixi

]
−
∑
i

[
βγi

x∗i∑
k xk
− αix∗i

]
(A.307)

where γi = (1− xi∑
k xk

) (A.308)

=
∑
i

uγi (x)−
∑
i

uγi (x
∗) (A.309)

where uγi is the original utility function, ui, with “revenues” (ψi(Mi(x))) reweighted

by γi. In this case, auto-welfare regret is actually computing standard welfare with

reweighted “revenues”. High revenues are weighted lower and low revenues are

weighted higher, which naturally encourages a more even distribution of resources.

A.9.3 Congestion Control Protocols

Similar utility functions can be used to model a congestion control protocol with

a tail-drop policy. In this game, a router drops packets if the total number of packets

exceeds the network capacity (e.g., C = 1). In this case, the utility functions are

defined piecewise:

ui(x) =


xi

∑
k xk ≤ 1

β xi∑
k xk
− (β − 1)xi

∑
k xk > 1.

(A.310)

For
∑

k xk ≤ 1, the utility functions are linear, thus the Jacobian of the associated

game map, F (x) = {−∂u0
∂x0
, . . . ,−∂uN

∂xN
}, is a zero matrix, which is positive semidefinite.

Monotonicity for the second case follows the same proof as for the linear resource

allocation game above.

142

A.10 Machine Learning Network Motivation

The example presented in Subsection 2.7.2 demonstrates our proposed no-regret

algorithm on a cloud-based machine learning network. Our network is motivated by

expectations of the next era of machine learning. Data is often the difference between

a high performing model and a mediocre one; for some data hungry models (e.g., deep

learning), Big Data launches them to state-of-the-art results. We expect Big Data to

drive a mature digital supply chain capable of supporting an economy where producers

provide data for consumers (i.e., machine learning models) to consume. Unlike the

present, this commodity will not be transferred into local storage for consumption on

personal machines; rather, it will be transmitted in batches, immediately consumed

for training, and discarded to allow room for the next batch. Our model of a cloud-

based machine learning network (MLN) is trivially adapted from the service oriented

internet (SOI) model proposed in the work of Nagurney and Wolf [2014]. In the

original SOI model, service providers (e.g., Netflix, Amazon) stream content (e.g.,

movies, music). In our MLN model, service providers (e.g., Twitter, Wikipedia)

stream machine learning data. Service providers control the quantity of data (i.e., #

of samples × # of features) flowing through the market. Network providers charge

service providers a fee for transmitting their data to consumers. The price different

consumer markets are willing to pay service providers to stream data over a network of

a certain quality is given by demand functions, price(quantity,quality). Given these

relationships, service providers and network providers attempt to maximize their

profits by varying their respective controls (quantity,quality) over the network. These

relationships are parameterized so that we can instantiate ten five-firm networks by

drawing parameters from uniform distributions over predefined ranges (code available

@ github.com/all-umass/VI-Solver).

143

A.11 GTD Algorithms

The gradient temporal difference learning algorithm (GTD) is a Reinforcement

Learning algorithm that can be used to evaluate a target policy by observing a sepa-

rate behavior policy. The GTD update rules are

yt+1 = yt + αt(b− Aθt −Myt) (A.311)

θt+1 = θt + αt(A
>yt) (A.312)

where M = I or M is a covariance matrix. Either way, M is symmetric positive

definite.

These update rules can be derived from a two-player game with appropriate agent

loss functions, f (i). For example, if

f (1)(y, θ) = −y>(b− Aθ) +
1

2
y>My (A.313)

f (2)(y, θ) = −θ>A>y, (A.314)

then online simultaneous gradient descent with F = [∇yf
(1),∇θf

(2)] gives the same

updates as GTD. Consider rewriting this update as [yt+1, θt+1] = [yt, θt]−αF ([yt, θt]).

Then

F =
(My+Aθ−b
−A>y

)
(A.315)

=
(

M A
−A> 0

)(
y
θ

)
+
(
−b
0

)
(A.316)

= Jx+ d (A.317)

Js =
(
M 0
0 0

)
� 0. (A.318)

Therefore, F is monotone.

144

By Theorem 2, the corresponding path integral loss that these dynamics bound is

f(x) =
1

2
[x>J>x+ x>(J − J>)x∗ − x∗>J>x∗] + d>(x− x∗) (A.319)

=
1

2
(y>My − y∗>My∗) + y>Aθ∗ − y∗>Aθ − b>(y − y∗) (A.320)

=
1

2
||y||2M , (A.321)

where y∗ = 0 and Aθ∗ − b = 0. A measure of how well θ is performing is missing

from the loss. This confirms our theoretical motivation for using the modified path

integral loss displayed below:

f̂(x) =
1

2
[x̂>J>x̂+ x̂>(J − J>)x∗ − x∗>J>x∗] + d>(x̂− x∗) (A.322)

+
1

2
[x>J>x+ x>(J − J>)x̂− x̂>J>x̂] + d>(x− x̂) (A.323)

= ||y||21
2
M+η̂AA>

+ ||b− Aθ||2η̂I − 〈y, b− Aθ〉η̂M (A.324)

where ||v||2A = z>Az and 〈u, v〉A = u>Av. Note that this modified loss contains terms

that encourage Aθ = b, y = 0, and y to align with Aθ− b. In the GTD algorithms, y

was originally introduced as an auxiliary variable to estimate E[ρδφ] = b− Aθ, so it

is reassuring that the modified loss contains these terms.

A.12 Constant-Linear GANs

The Constant-Linear GAN is a Wasserstein-type GAN with constant generator

and linear discriminator. The minimax objective is

min
G

max
d
V (G, d) = Ex∼pdata(x) [d

>x]− Ez∼pz(z)[d
>Gz] (A.325)

where x ∈ Rn, z ∈ Rm, d ∈ Rn, G ∈ Rn×m.

145

For simplicity of exhibition, we will estimate the expectations with a single sample

x ∼ pdata(x) and z ∼ pz(z), however, the result applies to batches as well. The

minimax objective simplifies to

min
G

max
d
V (G, d) = d>(x−Gz) (A.326)

=
∑
i

di(xi −
∑
j

Gijzj). (A.327)

Let g =



G11

...

G1m

Gi1

...

Gim

...



be a flattened version of the matrix G.

Also, let A =



z1 0 · · ·

zj 0 · · ·

zm 0 · · ·

0 z1 · · ·

0 zj · · ·

0 zm · · ·

· · · · · · · · ·



∈ Rmn×n.

Then,

146

F =



−d1z1

−d1zj

−d1zm
...

−dizj∑
j G1jzj − x1∑
j Gijzj − xi∑
j Gnjzj − xn



(A.328)

=

0mn×mn −A

A> 0n×n


g
d

+

 0

−x

 (A.329)

= Jγ + b (A.330)

Js =
(

0 0
0 0

)
� 0. (A.331)

Therefore, F is monotone. If G and d are regularized with α|| · ||22, then F is strongly

monotone with parameter α.

In the subsequent section (Appendix A.13), we show that the corresponding path

integral loss that OEG bounds is

V (Ĝ, d∗)− V (G∗, d̂) + V (G, d̂)− V (Ĝ, d). (A.332)

The minimax objective is linear in the random variables x and z, which allows

us to move weights outside the expectations. Let b = G[:,−1] denote the last column

and G[:,:−1] the preceding of the columns. We’ll assume p(z) has mean zero and x has

mean µ. The objective simplifies to

147

min
G

max
d,||d||≤1

V (G, d) = d>(E[x]−G[:,:−1]E[z]−G[:,−1]) (A.333)

min
b

max
d,||d||≤1

V (b, d) = d>(µ− b) (A.334)

min
b
V (b) =

(µ− b)>(µ− b)
||µ− b||

= 0 (A.335)

⇒ b = µ, d = 0. (A.336)

Therefore, affine GANs only learn the mean of the distribution.

A.13 Path Integral Loss for Minimax Games

Here we evaluate the path integral loss for minimax games:

min
x1

max
x2

V (x1, x2) (A.337)

dV = 〈 ∂V
∂x1

, dx1〉+ 〈 ∂V
∂x2

, dx2〉 (A.338)

f(x) =

∫
z:o→x

〈F (z), dz〉 (A.339)

=

∫
z:o→x

〈∂V
∂z1

, dz1〉+ 〈−∂V
∂z2

, dz2〉 (A.340)

=

∫
z1:o1→x1
z2:o2→o2

dV −
∫
z1:o1→o1
z2:o2→x2

dV (A.341)

= V (x1, o2)− V (o1, o2)− V (o1, x2) + V (o1, o2) (A.342)

= V (x1, o2)− V (o1, x2). (A.343)

Similarly, the modified path integral loss is

f(x) = V (x̂1, o2)− V (o1, x̂2) + V (x1, x̂2)− V (x̂1, x2). (A.344)

A.14 Composition of Monotone Fields

Let F and G be monotone maps from Rn → Rn. Consider the composition F ◦G.

The composition of monotone fields is not necessarily monotone. Take F = G = Ix,

148

where I is the identity matrix. Then F ◦ G = Ix2 where the power is applied

elementwise. This field represents the gradient of 1
3
x3, which is a non-convex function,

therefore F ◦G is non-monotone.

149

APPENDIX B

LINEAR QUADRATIC GANS AND
CROSSING-THE-CURL

This appendix supplements Chapter 3, but also provides additional material for

the curious reader.

B.1 A Survey of Candidate Theories Continued

In this section, we survey several alternative theories for studying GANs. Ulti-

mately, we select Variational Inequalities based on our research.

B.1.1 Algorithmic Game Theory

Algorithmic Game Theory (AGT) offers results on convergence to equilibria when

a game, possibly online, is convex [41], socially-convex [33], or smooth [97]. A convex

game is one in which all player losses are convex in their respective variables, i.e.

fi(xi, x−i) is convex in xi. A socially-convex game adds the additional requirements

that 1) there exists a strict convex combination of the player losses that is convex and

2) each player’s loss is concave in the variables of each of the other players. In other

words, the players as a whole are cooperative, yet individually competitive. Lastly,

smoothness ensures that “the externality imposed on any one player by the actions of

the others is bounded” [97]. In a zero-sum game such as Equation (3.1), one player’s

gain is exactly the other player’s loss making smoothness an unlikely fit for studying

GANs.

150

B.1.2 Differential Games

Differential games [13, 38] consider more general dynamics such as ẍ = −F (x),

not just first order ODEs, however, the focus is on systems that separate control, u,

and state x, i.e. ẋ = −F (x(t), u(t), t). More specific to our interests, Differential Nash

Games can be expressed as Differential VIs, a specific class of infinite dimensional VIs

with explicit state dynamics and explicit controls; these, in turn, can be framed as

infinite dimensional VIs without an explicit state.

B.1.3 Equivalence of Monotonicity to Euclidean Contraction

Strongly-monotone maps are equivalent to contraction operators with respect to

Euclidean distance. Consider the following iterative update:

xk+1 = G(xk). (B.1)

Assume the operator G is known to be a (1 − γ)-contraction (γ ∈ (0, 1)) with

respect to the distance function, D:

D(G(x);G(y)) ≤ (1− γ)D(x; y) =⇒ D(G(x);G(y))D(x; y) ≤ (1− γ)D(x; y)2.

(B.2)

If D is Euclidean distance, then

||G(x)−G(y)||||x− y|| ≤ (1− γ)||x− y||2. (B.3)

Rewrite the update to better fit the form of variational inequality updates:

xk+1 = xk − η
(xk −G(xk)

η

)
. (B.4)

where F (x) = x−G(x)
η

.

151

If G(x) is a (1− γ)-contraction. Then

〈F (x)− F (y), x− y〉 =
1

η
||x− y||2 − 1

η
〈G(x)−G(y), x− y〉 (B.5)

≥ 1

η
(||x− y||2 − ||G(x)−G(y)||||x− y||) by Cauchy-Schwarz

(B.6)

≥ 1

η
(||x− y||2 − (1− γ)||x− y||2) (B.7)

=
γ

η
||x− y||2 > 0. (B.8)

Therefore, F is strongly monotone with parameter γ
η
.

In addition,

||F (x)− F (y)|| = ||x−G(x)

η
− y −G(y)

η
|| (B.9)

≤ 1

η

[
||x− y||+ ||G(x)−G(y)||

]
by triangle-inequality (B.10)

≤ 1

η

[
||x− y||+ (1− γ)||x− y||

]
by contraction (B.11)

=
2− γ
η
||x− y||. (B.12)

Therefore, F is also smooth with parameter 2−γ
η

.

Assume the mapping F is strongly monotone with parameter γ and smooth with

parameter β, i.e., ||F (x)− F (y)|| ≤ β||x− y||. As before, define G(x) = x− ηF (x).

Then

||G(x)−G(y)||2 = 〈G(x)−G(y), G(x)−G(y)〉 (B.13)

= 〈(x− ηF (x))− (y − ηF (y), (x− ηF (x))− (y − ηF (y)〉 (B.14)

= ||x− y||2 − 2η〈F (x)− F (y), x− y〉+ η2||F (x)− F (y)||2 (B.15)

≤ (1− 2ηγ + η2β2)||x− y||2. (B.16)

152

In order for G to be a contraction, |1− 2ηγ+ η2β2| must be less than 1. This implies

that 0 < η < 2γ
β2 . If this condition is met, then G is a

√
1− 2ηγ + η2β2-contraction.

If η is set optimally to γ
β2 , then G is a

√
1− γ2

β2 -contraction.

B.2 Nash Equilibrium vs VI Solution

Theorem 9. Theorem 3.1 Repeated from Cavazzuti et al. [2002]. Let (C,X) be a

cost minimization game with player cost functions Ci and feasible set X . Let x∗ be a

Nash equilibrium. Let F = [∂C1

∂x1
, . . . , ∂CN

∂xN
]. Then

〈F (x∗), x− x∗〉 ≥ 0 ∀x ∈ ({x∗ + IX (x∗)} ∩ X)︸ ︷︷ ︸
X ′

⊆ X (B.17)

where IX (x∗) is the internal cone at x∗ (defined on p. 494). The internal cone

represents the smallest pointed cone containing the union of all possible unilateral de-

viations by players from the equilibrium point. Note that X ′ ⊆ X . When Ci(xi,x−i)

is pseudoconvex in xi for all i, this condition is also sufficient. Note that this is implied

if F is pseudomonotone, i.e. pseudomonotonicity of F is a stronger condition.

To summarize the main takeaway, if 〈F (x∗), x − x∗〉 ≥ 0 ∀x ∈ X , i.e., x∗ solves

V I(F,X), and F is pseudomonotone, then x∗ is a Nash equilibrium.

B.3 Table of Maps Considered in Analysis

All maps corresponding to the (w1, b)-subsystem in Table B.1 maintain the desired

unique fixed point, F (x∗) = 0, where x∗ = (w∗1, b
∗) = (0, µ).

For the (w2, a)-subsystem, all maps except Flin with certain settings of (α, β, γ)

and Fcon maintain the desired unique fixed point, x∗ = (w∗2, a
∗) = (0, σ). Fcon intro-

duces an additional spurious fixed point at

153

Name Map

F [−∇φV ;∇θV]

Fw1,b [b− µ,−w1]>

Fw1,b
alt [b− µ+ ρkw1,−w1]>

Fw1,b
unr [b− µ, ρk∆k(b− µ)− w1]>

Fw1,b
reg [b− µ,−w1 + 2η(b− µ)]>

Fw1,b
con [w1, b− µ]>

Fw1,b
eg [w1, b− µ]>

Fw1,b
cc [w1, b− µ]>

Fw1,b
ηcc [b− µ+ ηw1,−w1 + η(b− µ)]>

Fw1,b
lin [α(b− µ) + (β + γ)w1,−αw1 + (β + γ)(b− µ)]>

Fw2,a [a2 − σ2,−2w2a]>

Fw2,a
alt [a2 − σ2, 2ρka

3 − 2a(ρkσ
2 + w2)]>

Fw2,a
unr [a2 − σ2, 4ρk∆ka

3 − 2a(2ρk∆kσ
2 + w2)]>

Fw2,a
reg [a2 − σ2,−2w2a+ 4ηa(σ2 + a2)]>

Fw2,a
con [a2 − σ2 + 4βw2a

2, 2aβ(a2 − σ2) + 4βw2
2a− 2w2a]>

Fw2,a
eg [4w2a

2, 2a(a2 − σ2)− 4w2
2a]>

Fw2,a
cc [4w2a

2, 2a(a2 − σ2)]>

Fw2,a
eg′ [w2,

a2−σ2−2w2
2

2a
]>

Fw2,a
cc′ [w2,

a2−σ2

2a
]>

Fw2,a
lin [α(a2 − σ2) + 4(β + γ)w2a

2, 2a(β + γ)(a2 − σ2) + 4(β − γ)w2
2a− 2αw2a]>

FW2,A
cc 2[∀i < N :

∑
d≤iAidANd − ΣiN ,∀i < N : −

∑
d<N AdiWdN]>

Table B.1: Table of vector field maps where V is the minimax objective, ρk is a
stepsize, ∆k is # of unrolled steps, Σ is the sample covariance matrix, N is the row
of A being learned, and α, γ, β, η are hyperparameters.

154

a =

√
−3 +

√
9 + 32σ2β2

16β2
, (B.18)

w2 =
σ2 − a2

4βa2
. (B.19)

Fcon is a special case of Flin where α = 1, β = 1, and γ = 0.

B.4 Minimax Solution to Constrained Multivariate LQ-GAN

is Unique

Proposition 9. Assume z ∼ p(z) and y ∼ p(y) are both in Rn. If W2 is constrained

to be symmetric and A is constrained to be of Cholesky form, i.e., lower triangu-

lar with positive diagonal, then the unique minimax solution to Equation (3.6) is

(W ∗
2 , w

∗
1, A

∗, b∗) = (0,0,Σ1/2, µ) where Σ1/2 is the unique, non-negative square root of

Σ.

Proof.

V (G,D) = Ey∼N (µ,Σ)

[
y>W2y + w>1 y

]
+ Ez∼N (0,In)

[
− (Az + b)>W2(Az + b)− w>1 (Az + b)

]
(B.20)

= Ey∼N (µ,Σ)

[∑
i

∑
j

W2ijyiyj +
∑
i

w1iyi

]
(B.21)

− Ez∼N (0,In)

[∑
i

∑
j

W2ij(bi +
∑
k

Aikzk)(bj +
∑
k

Ajkzk) +
∑
i

w1i(bi +
∑
k

Aikzk)
]
.

(B.22)

Taking derivatives and setting equal to zero, we find that the fixed point at the

interior is unique:

155

Ẇ2 = Ey∼N (µ,Σ)

[
yy>

]
− Ez∼N (0,In)

[
(Az + b)(Az + b)>

]
(B.23)

ẇ1 = Ey∼N (µ,Σ)

[
y
]
− Ez∼N (0,In)

[
(Az + b)

]
(B.24)

Ȧ = Ez∼N (0,In)

[
(W2 +W>

2)Azz> + (W2 +W>
2)bz> + w1z

>
]

(B.25)

ḃ = Ez∼N (0,In)

[
(W2 +W>

2)Az + (W2 +W>
2)b+ w1

]
. (B.26)

Setting derivatives equal to zero:

ẇ1 = µ− b = 0⇒ b = µ (B.27)

Ẇ2 = Ey∼N (µ,Σ)

[
(y − µ)(y − µ)> + µy> + yµ> − µµ>

]
− Ez∼N (0,In)

[
(Az + b)(Az + b)>

]
(B.28)

= Σ + µµ> − Ez∼N (0,In)

[
Azz>A> + Azb> + b(Az)> + bb>

]
(B.29)

= Σ + µµ> − AA> − bb> = Σ− AA> = 0⇒ A = Σ1/2 (B.30)

Ȧ = Ez∼N (0,In)

[
(W2 +W>

2)Azz> + (W2 +W>
2)bz> + w1z

>
]

(B.31)

= (W2 +W>
2)A = 0⇒ W2 +W>

2 = 0⇒ W2 = −W>
2 = 0 (B.32)

ḃ = Ez∼N (0,In)

[
(W2 +W>

2)Az + (W2 +W>
2)b+ w1

]
(B.33)

= (W2 +W>
2)b+ w1 = w1 = 0. (B.34)

The last implication in Equation (B.30) follows because A is constrained to be of

Cholesky form, i.e., lower triangular with positive diagonal, and every symmetric

positive definite matrix has a unique Cholesky decomposition.

The second to last implication of Equation (B.32) follows because A = Σ1/2 is

necessarily full rank. Note this implies A> is also full rank. The null space of a full

rank matrix is the zeros vector, which implies W2 + W>
2 = 0. W2 is symmetric, so

this implies W2 = 0.

156

B.5 Divergence of Simultaneous Gradient Descent for the

(w1, b)-Subsystem

Consider the case where the mean of p(z) is zero:

Fw1,b = [b,−w1] = Jw1,bx, (B.35)

Jw1,b =

 0 1

−1 0

 , (B.36)

xk = [w1,k, bk]
>, (B.37)

xk+1 = xk − ρkFw1,b(xk), (B.38)

x∗ = [0, 0]. (B.39)

We will show that simultaneous gradient descent always produces an iterate that is

farther away from the equilibrium than the previous iterate, i.e. ||xk+1− x∗||2/||xk −

x∗||2 > 1.

||xk+1 − x∗||2/||xk − x∗||2 = ||xk − ρkJw1,bxk||2/||xk||2 (B.40)

= ||(I − ρkJw1,b)xk||2/||xk||2 (B.41)

=
x>k (I − ρkJw1,b)>(I − ρkJw1,b)xk

x>k xk
(B.42)

=
x>kMxk
x>k xk

Rayleigh quotient of M (B.43)

≥ λmin(M), (B.44)

where

157

M = (I − ρkJw1,b)>(I − ρkJw1,b) (B.45)

=

1 + ρ2
k 0

0 1 + ρ2
k

 , (B.46)

λmin(M) = 1 + ρ2
k > 1. (B.47)

Therefore, simultaneous gradient descent diverges from the equilibrium of the (w1, b)-

subsystem for any step size scheme, ρk.

B.6 Derivation of Crossing-the-Curl

Here, we derive our proposed technique in 3-D, however, the result of the derivation

can be computed in arbitrary dimensions:

(∇× F)× F = −F × (∇× F) (B.48)

= −v × (∇× F) where v = F (B.49)

= −∇F (v · F) + (v · ∇)F where ∇F is Feynman notation (B.50)

= −
(
v1

[∂F1

∂x1

, . . . ,
∂F1

∂xn

]
+ . . .+ vn

[∂Fn
∂x1

, . . . ,
∂Fn
∂xn

])
(B.51)

+
(
v1

∂

∂x1

+ . . .+ vn
∂

∂xn

)
F (B.52)

= (J − J>)F. (B.53)

B.7 Monotonicity: Definitions and Requirements

For all x ∈ X and x′ ∈ X ,

158

〈F (x)− F (x′), x− x′〉(> 0,≥ s||x− x′||2) ≥ 0 (strictly, s-strongly)-monotone,

(B.54)

〈F (x′), x− x′〉 ≥ 0 =⇒ F (x′), x− x′〉(> 0) ≥ 0 (strictly-)pseudomonotone,

(B.55)

〈F (x′), x− x′〉 > 0 =⇒ F (x′), x− x′〉 ≥ 0 quasimonotone. (B.56)

While we used these definitions in our analysis for certain cases, the following

alternate requirements proposed in [22] made the complete analysis of the system

tractable. We restate them here for convenience. Note that we what we refer to as

condition (B) in the main body of the paper is actually a stronger version of condition

(C) below with v = (x∗ − x)/t.

Consider the following conditions:

(A) For all x ∈ X and v ∈ Rn such that v>F (x) = 0 we have v>J(x)v ≥ 0.

(B) For all x ∈ X and v ∈ Rn such that F (x) = 0, v>J(x)v = 0, and v>F (x+t̃v) > 0

for some t̃ < 0, we have that for all t̄ > 0, there exists t ∈ (0, t̄] such that t ∈ Ix,v

and v>F (x+ tv) ≥ 0.

(C) For all x ∈ X and v ∈ Rn such that F (x) = 0 and v>J(x)v = 0, we have that

for all t̄ > 0, there exists t ∈ (0, t̄] such that t ∈ Ix,v and v>F (x+ tv) ≥ 0.

Theorem 10 ([22], Theorem 3). Let F : X → Rn be differentiable on the open convex

set X ⊂ Rn.

(i) F is quasimonotone on X if and only if (A) and (B’) hold.

(ii) F is pseudomonotone on X if and only if (A) and (C’) hold.

B.8 A Comparison of Monotonicity and Hurwitz

The monotonicity and Hurwitz properties are complementary.

159

B.8.1 Hurwitz Does Not Imply Quasimonotonicity

Let F (x) = Jx, J =

 1 4

−1 1

, S =

 0 1

−1 0

, and v = SJx = [−x1 + x2,−x1 −

4x2]>. Then λ1,2(J) = 1± 2i so J is Hurwitz, and

[v>Jv]
∣∣∣
(−1,1)

= [x2
1 + 3x1x2 + x2

2]
∣∣∣
(−1,1)

= −1, (B.57)

which, by condition (A), implies F is not quasimonotone.

B.8.2 Monotonicity Does Not Imply Hurwitz

Let F (x) = Jx and J =

 0 1

−1 0

. Then λ1,2(J) = ±i so J is not Hurwitz, but

J + J> =

0 0

0 0

 � 0, λ1,2 = 0, (B.58)

so F is monotone.

B.8.3 Monotonicity and Hurwitz Can Overlap

Let F (x) = Jx and J =

1 0

0 1

. Then λ1,2(J) = 1 so J is Hurwitz and

J + J> =

1 0

0 1

 � 0, λ1,2 = 1, (B.59)

so F is monotone.

Proposition 10 ((Strict, Strong)-Monotonicity Implies Hurwitz). If F is differen-

tiable and strictly-monontone, then the Jacobian of F , J , is Hurwitz. If F is differ-

entiable and s-strongly-monotone, then J is Hurwitz with min(R(λ)) ≥ s.

160

Proof. Assume A is a real, square matrix and A is either positive definite or strongly-

positive definite, i.e. v>Av � 0 or v>Av � s||v||2 with v ∈ Cn. Let ∗ denote the

conjugate transpose and note that 〈u,w〉 = u∗w. Let λ = a + bi be a potentially

complex eigenvalue of A and v be its corresponding eigenvector, i.e. Av = λv. We

aim to prove that if A satisfies the above assumptions, then a > 0, i.e., A is Hurwitz.

〈(A+ A>)v, v〉 = 〈Av, v〉+ 〈A>v, v〉 (B.60)

〈A>v, v〉 = (A>v)∗v (B.61)

= v∗(A>)∗v (B.62)

= v∗(Av) because A is real (B.63)

= 〈v, Av〉 (B.64)

0 < (or s||v||2 ≤)〈1
2

(A+ A>)v, v〉 (B.65)

=
1

2
(〈Av, v〉+ 〈v, Av〉) (B.66)

=
1

2
((a+ bi)〈v, v〉+ (a+ bi)〈v, v〉) (B.67)

=
1

2
[(a+ bi)||v||2 + (a− bi)||v||2] (B.68)

= a||v||2 (B.69)

⇒ a > 0 or a ≥ s. (B.70)

If F is (strictly, strongly)-monotone, then the Jacobian of F is a real, square, (positive

definite, strongly-positive definite) matrix, therefore, it matches the above assump-

tions. Hence, the conclusion follows.

B.9 Crossing-the-Curl Can Make Monotone Fields, Non-

Monotone

Here, we provide examples of negative results for Crossing-the-Curl. This is to

emphasize that our proposed technique can cause problems if not used with cau-

161

tion. The headings below describe the before and afters when applying our proposed

technique to the map F (x) = Jx.

Monotone to Non-Monotone.

J =

 4 1

−1 1

 (B.71)

Jsym =

4 0

0 1

 , λ1,2 = 4, 1 (B.72)

Jsymcc =

2 3

3 2

 , λ1,2 = 5,−1 (B.73)

Increase in condition number: κ = 11/5→ 4.

J =

 1 1/4

−1 1

 (B.74)

Jsym =

 1 −3/8

−3/8 1

 , λ1,2 = 11/8, 5/8 (B.75)

Jsymcc =

5/4 0

0 5/16

 , λ1,2 = 5/4, 5/16 (B.76)

Saddle becomes Monotone.

J =

−1 1

−1 1

 (B.77)

Jsym =

−1 0

0 1

 , λ1,2 = −1, 1 (B.78)

Jsymcc =

 2 −2

−2 2

 , λ1,2 = 4, 0 (B.79)

162

Unstable point becomes stable.

J =

−2 1

−1 −1

 (B.80)

Jsym =

−2 0

0 −1

 , λ1,2 = −2,−1 (B.81)

Jsymcc =

 2 −1

−1 2

 , λ1,2 = 3, 1 (B.82)

Fw2,a
eg′ becomes non-monotone.

F =

 w2

a2−σ2−2w2
2

2a

 (B.83)

Fcc =

−w2(a2−σ2−2w2
2)

2a2

w2
2

a

 (B.84)

Tr[Jcc]
∣∣∣
w2=0,a=2σ

= −3

8
⇒ Jcc���0 (B.85)

Proposition 11. Crossing-the-Curl forces monotonicity for normal, affine fields.

Proof. Let F = Jx+ b and assume J is normal, i.e., JJ> = J>J . Then

163

Fcc = (J> − J)F (B.86)

= (J> − J)(Jx+ b) (B.87)

Jcc = (J> − J)J (B.88)

= (J>J − JJ) (B.89)

Jsymcc =
2J>J − JJ − J>J>

2
(B.90)

=
J>J + JJ> − JJ − J>J>

2
+
J>J − JJ>

2
(B.91)

=
J>J + JJ> − JJ − J>J>

2
because J is normal (B.92)

=
−(J − J>)(J − J>)

2
(B.93)

=
(J − J>)>(J − J>)

2
(B.94)

z>Jsymcc z =
1

2
[(J − J>)z]>[(J − J>)z] (B.95)

=
1

2
||(J − J>)z||2 ≥ 0⇒ Jcc � 0. (B.96)

B.10 Analysis of the (w1, b)-Subsystem

Proposition 12. Unrolled GANs and Alternating Updates are Monotone for the

(w1, b)-subsystem.

Proof. In Unrolled GANs, the generator computes the gradient of V assuming the

discriminator has already made several updates. Define the discriminator’s update

as

w1,k+1 = w1,k − ρFw1(w1,k, bk) = Uk(w1,k), (B.97)

and denote the composition of U , ∆k-times as

164

U∆k
k (w1,k) = Uk(· · · (Uk(Uk(w1,k)) · · ·) (B.98)

where ∆k is some positive integer. Then the update for Unrolled GANs is

w1,k+1 = w1,k − ρ
∂V (w1,k, bk)

∂w1

(B.99)

bk+1 = bk − ρ
∂V (U∆k

k (w1,k), bk)

∂b
. (B.100)

In the case of the (w1, b)-subsystem, we can write these unrolled updates out explicitly.

Remember F = [b− µ,−w1]>, so

Uk(w1,k) = w1,k − ρ(bk − µ), (B.101)

U∆k
k (w1,k), bk) = w1,k − ρ∆k(bk − µ). (B.102)

Plugging this back in, we find

w1,k+1 = w1,k − ρ(bk − µ) (B.103)

bk+1 = bk − ρ(ρ∆k(bk − µ)− w1,k), (B.104)

where the corresponding map is F unr = [bk − µ, ρ∆k(bk − µ) − w1,k]. Taking a look

at the Jacobian, we find

Junr =

 0 1

−1 ρ∆k

 (B.105)

Junrsym =

0 0

0 ρ∆k

 � 0. (B.106)

165

Now, consider alternating updates:

w1,k+1 = w1,k − ρ(bk+1 − µ) (B.107)

= w1,k − ρ(bk − ρ(−w1,k)− µ) (B.108)

bk+1 = bk − ρ(−w1,k). (B.109)

Here, we considered updating b first, but the (w1, b)-subsystem is perfectly symmetric,

so the analysis holds either way. If w1 is updated first, this is equivalent to Unrolled

GAN with ∆k = 1 (see Equation B.104). The Jacobian is

Jalt =

 ρ 1

−1 0

 (B.110)

Jaltsym =

ρ 0

0 0

 � 0. (B.111)

The Jacobian’s for Unrolled GAN and alternating descent are both positive semidef-

inite, therefore, their maps are monotone (but not strictly-monotone). Note that

these results imply neither is Hurwitz either because both Jacobians exhibit a zero

eigenvalue.

Proposition 13. Flin, Fcc, Feg, and Fcon are strongly-monotone for the (w1, b)-

subsystem (includes multivariate case). F and Freg are monotone, but not strictly

monotone. Moreover, Flin, Fcc, Feg, Fcon, and Freg are Hurwitz for the (w1, b)-

subsystem (includes multivariate case). F is not Hurwitz.

Proof. We start with the original map, Fw1,b, and its Jacobian.

166

F =

b− µ
−w1

 (B.112)

J =

 0 I

−I 0

 (B.113)

J = Jsym =

0 0

0 0

 � 0 (B.114)

The symmetrized Jacobian is positive semidefinite, therefore this system is monotone.

Also, the real parts of the eigenvalues of its Jacobian are zero, therefore, J is not

Hurwitz.

Now we analyze Fw1,b
cc , Fw1,b

eg , and Fw1,b
con , which as discussed in the main body, are

equivalent.

Fcc = Feg = Fcon =

 w1

b− µ

 (B.115)

J = Jsym =

I 0

0 I

 � 1 (B.116)

The symmetrized Jacobian is positive definite with a minimum eigenvalue of 1, there-

fore this system is 1-strongly-monotone. By Proposition 10, the Jacobians of these

maps are Hurwitz for the (w1, b)-subsystem.

Now we analyze the generalization Fw1,b
lin = (αI − βJ> − γJ)Fw1,b.

167

Flin =

 α(b− µ) + (β + γ)w1

−αw1 + (β + γ)(b− µ)

 (B.117)

J =

(β + γ)I αI

−αI (β + γ)I

 (B.118)

Jsym =

(β + γ)I 0

0 (β + γ)I

 � β + γ (B.119)

The symmetrized Jacobian is positive definite with a minimum eigenvalue of (β+ γ),

therefore this system is (β+γ)-strongly-monotone. By Proposition 10, Jw1,b
lin is Hurwitz

for the (w1, b)-subsystem.

Now we analyze the regularized-gradient algorithm, Fw1,b
reg .

Freg =

 b− µ

−w1 + 2η(b− µ)

 , η > 0 (B.120)

Jreg =

 0 I

−I 2ηI

 , λ1,2 = η ±
√
η2 − 1⇒ R(λ1,2) > 0 (B.121)

Jregsym =

0 0

0 2ηI

 � 0 (B.122)

Therefore, this map is monotone (but not strictly or strongly-monotone). Also, the

real parts of the eigenvalues of its Jacobian are strictly positive, therefore, Jw1,b
reg is

Hurwitz.

Note that for Fcc, Feg, Fcon, and Flin, J is symmetric, therefore, F is the gradient

of some function, f(w1, b) = 1
2
(w2

1 + (b−µ)2). Also, note that the standard algorithm

with step size ρk = 1
k+1

is equivalent to the standard running estimate of the mean:

µk+1 = k
k+1

µk + 1
k+1

xk where xk is the k-th sample.

168

B.11 A Linear Combination of F , JF , and J>F is Not Quasi-

montone for the 1-d LQ-GAN

The Jacobian of Flin, written below, will be useful for the proof. The proof

proceeds by process of elimination, ruling out different regions of the space [α, β, γ] ∈

R3 by showing that any Flin with those constants is not quasimonotone.

(αI + βJ> − γJ)F =



α 0 −2(β + γ)a −2(β + γ)b

0 α 0 −(β + γ)

2(β + γ)a 0 α− 2(β − γ)w2 0

2(β + γ)b (β + γ) 0 α− 2(β − γ)w2





−σ2 + a2 + b2

b

−2w2a

−2w2b− w1


(B.123)

=



α(−σ2 + a2 + b2) + 4(β + γ)w2(a2 + b2) + 2(β + γ)w1b

αb+ (β + γ)(2w2b+ w1)

2a(β + γ)(−σ2 + a2 + b2) + 4(β − γ)w2
2a− 2αw2a

2(β + γ)b(−σ2 + a2 + b2) + (β + γ)b+ (2(β − γ)w2 − α)(2w2b+ w1)


(B.124)

Specifically, we first consider the sign of β+γ. Lemma 6 rules out negative values.

Lemma 7 rules out positive values when σ2 ≤ 1/2, and Lemma 8 rules out positive

values when σ2 > 1/2. Corollary 2 concludes that β + γ = 0.

Next, given β + γ = 0, we consider the sign of α. Lemmas 9 and 10 rule out

positive values of α when β is greater than or less than or equal to zero respectively,

i.e., α cannot be positive. Similarly, Lemmas 11 and 12 rule out negative values of

α when β is less than or greater than or equal to zero respectively, i.e., α cannot be

negative. Corollary 3 concludes that α = 0.

Lastly, given that β + γ = α = 0, Lemmas 13 and 14 prove that β cannot be

greater than or less than or equal to zero respectively. Corollary 4 concludes that

169

β = γ = 0. Therefore, the only quasimonotone linear combination is the trivial one

resulting in F = 0, which completes the proof.

Lemma 6. For Flin to be quasimonotone, β + γ must not be strictly less than zero,

i.e. β + γ��<0.

Proof. Consider

y = [0, 0, σ,−σ] (B.125)

x = [0, 0, σ, σ] (B.126)

〈F (y), x− y〉 = 2σFb(y) = −2σ2(β + γ)(1− 2σ2 + 2σ2 + 2σ2) (B.127)

= −2σ2(β + γ)(1 + 2σ2) (B.128)

〈F (x), x− y〉 = 2σFb(x) = 2σ2(β + γ)(1 + 2σ2) (B.129)

If (β+γ) < 0, then this system is not quasimonotone. Therefore, assume (β+γ) ≥ 0

from now on.

Lemma 7. If σ2 ≤ 1
2
, for Flin to be quasimonotone, β+γ must not be strictly greater

than zero, i.e. β + γ��>0.

Proof. We will use a different parameterization of Flin for this part of the proof.

Jskew = (J> − J)/2 (B.130)

Jsym = (J> + J)/2 (B.131)

β = (β̂ + γ̂)/2 (B.132)

γ = (β̂ − γ̂)/2 (B.133)

β̂ = β + γ (B.134)

γ̂ = β − γ (B.135)

170

The linear combination is now defined as

(αI + β̂Jskew + γ̂Jsym)F =



α 0 −2β̂a −2β̂b

0 α 0 −β̂

2β̂a 0 α− 2γ̂w2 0

2β̂b β̂ 0 α− 2γ̂w2





−σ2 + a2 + b2

b

−2w2a

−2w2b− w1


(B.136)

=



α(−σ2 + a2 + b2) + 4β̂w2(a2 + b2) + 2β̂w1b

αb+ β̂(2w2b+ w1)

2aβ̂(−σ2 + a2 + b2) + 4γ̂w2
2a− 2αw2a

2β̂b(−σ2 + a2 + b2) + β̂b+ (2γ̂w2 − α)(2w2b+ w1)


(B.137)

In order for a system to be quasimonotone, we require condition (A) (among other

properties). We will now show that this property is not satisfied for Flin with β̂ > 0

by considering two different cases.

Case 1: Consider the (w2, a)-subsystem. Let

171

v =



0 0 −1 0

0 0 0 0

1 0 0 0

0 0 0 0



Flin︷ ︸︸ ︷

α(−σ2 + a2 + b2) + 4β̂w2(a2 + b2) + 2β̂w1b

αb+ β̂(2w2b+ w1)

2aβ̂(−σ2 + a2 + b2) + 4γ̂w2
2a− 2αw2a

2β̂b(−σ2 + a2 + b2) + β̂b+ (2γ̂w2 − α)(2w2b+ w1)


(B.138)

=



−2aβ̂(−σ2 + a2 + b2)− 4γ̂w2
2a+ 2αw2a

0

α(−σ2 + a2 + b2) + 4β̂w2(a2 + b2) + 2β̂w1b

0


(B.139)

Above, we premultiply Flin by a skew symmetric matrix, which ensures v>Flin =

F>linAskewFlin = 0.

The relevant portion of the Jacobian of Flin is

Jw2,a
lin =

 4β̂(a2 + b2) 2aα + 8β̂w2a

8γ̂w2a− 2αa 2β̂(−σ2 + 3a2 + b2) + 4γ̂w2
2 − 2αw2

 (B.140)

Consider x = [0, 0, cσ, 0] and both β̂ and α fixed.

v>Jw2,a
lin v = lim

c→0+
2β̂(−1 + c2)2σ6[α2(−1 + 3c2) + 8β̂2c4σ2] (B.141)

= −2β̂σ6α2 ≥ 0 (B.142)

This implies either α = 0 or β̂ ≤ 0 for the system to be quasimonotone.

Case 2: Consider the (a, b)-subsystem. Let

172

v =



0 0 0 0

0 0 0 0

0 0 0 −1

0 0 1 0



Flin︷ ︸︸ ︷

α(−σ2 + a2 + b2) + 4β̂w2(a2 + b2) + 2β̂w1b

αb+ β̂(2w2b+ w1)

2aβ̂(−σ2 + a2 + b2) + 4γ̂w2
2a− 2αw2a

2β̂b(−σ2 + a2 + b2) + β̂b+ (2γ̂w2 − α)(2w2b+ w1)


(B.143)

=



0

0

−2β̂b(−σ2 + a2 + b2)− β̂b− (2γ̂w2 − α)(2w2b+ w1)

2aβ̂(−σ2 + a2 + b2) + 4γ̂w2
2a− 2αw2a


(B.144)

The relevant portion of the Jacobian of Flin is

Ja,blin =

2β̂(−σ2 + 3a2 + b2) + 4γ̂w2
2 − 2αw2 4abβ̂

4abβ̂ 2β̂(−σ2 + a2 + 3b2) + β̂ + 2w2(2γ̂w2 − α)


(B.145)

Consider α = 0 and x = [0, 0, σ
10
, σ

2
]. Then

v>Ja,blinv = β̂3σ4 (−1.44 + 4.46842σ2 − 3.37146σ4)︸ ︷︷ ︸
<0 ∀ σ2∈(0,1/2]

(B.146)

Then α = 0 ⇒ β̂ ≤ 0. In either case, β̂ must be nonpositive. Therefore, β̂ =

β + γ��>0.

Alternate Proof for Lemma 7. Part of the proof in Lemma 7 looks at the limit in

which a approaches 0. One might presume a simple fix is to constrain a to be larger

173

than some small value, e.g., 1e-10, and use a large β̂ value. Here, we show that even

using a = σ
100

breaks quasimonotonicity. The variance of the data distribution is

assumed to be unknown, which would make it very difficult to select a proper lower

bound for a that maintains quasimonotonicity within the feasible region.

Consider x = [0,−1, σ
100
, σ

2
] and the (a, b)-subsystem as in Lemma 7. Then

v>Jv =
(
− 5.9976β̂σ2

)
α2 +

(
β̂2σ3(−5.9976 + 8.9976σ2)

)
α

+ β̂3σ4(−1.4994 + 4.4997σ2 − 3.375σ4). (B.147)

If β̂ > 0, then this is a concave quadratic form in α. To find where this function

is positive, we need to find its roots.

174

α± =
−
(
β̂2σ3(−5.9976 + 8.9976σ2)

)
2
(
− 5.9976β̂σ2

) (B.148)

±
√
A−B

2
(
− 5.9976β̂σ2

) (B.149)

where (B.150)

A =
(
β̂2σ3(−5.9976 + 8.9976σ2)

)2

(B.151)

B = 4
(
− 5.9976β̂σ2

)(
β̂3σ4(−1.4994 + 4.4997σ2 − 3.375σ4)

)
(B.152)

√
A−B2

= β̂4σ6(5.99762 − (2)(5.9976)(8.9976)σ2 + 8.76162σ4) (B.153)

+ 4(5.9976)β̂4σ6(−1.4994 + 4.4997σ2 − 3.375σ4) (B.154)

= β̂4σ6
(

5.99762 − (4)(1.4994)(5.9976) + (5.9976)[(4.4997)(4)− (2)(8.9976)]σ2

(B.155)

+ [8.99762 − (4)(5.9976)(3.375)]σ4
)

(B.156)

= β̂4σ6
(

0.02159136σ2 − 0.01079424σ4
)

(B.157)

= β̂4σ8
(

0.02159136− 0.01079424σ2
)

(B.158)
√
A−B

2(−5.9976β̂σ2)
= −β̂σ2

√
(0.02159136− 0.01079424σ2)/(22 ∗ 5.99762) (B.159)

= −β̂σ2
√

0.00015006002− 0.00007502σ2 (B.160)

−b
2a

=
−
(
β̂2σ3(−5.9976 + 8.9976σ2)

)
2
(
− 5.9976β̂σ2

) (B.161)

= β̂σ(−1

2
+ 0.75010004001σ2) (B.162)

α± = β̂σ
(
− 1

2
+ 0.75010004001σ2 ± σ

√
0.00015006002− 0.00007502σ2

)
(B.163)

α2 > β̂2σ2(−0.48 + .751σ2)2 assuming σ2 < 1/2 (B.164)

β̂2 <
1

σ2(−0.48 + .751σ2)2
α2 (B.165)

175

The α root with smaller magnitude provides an upper bound for β̂2.

Now consider again x = [0, 0, σ
100
, 0] and Equation (B.141) with c = 1

100
.

v>Jlinv = 2β̂(−1 + c2)2σ6[α2(−1 + 3c2) + 8β̂2c4σ2] (B.166)

β̂2 ≥ α2 1− 3c2

8c4σ2
(B.167)

β̂2 >
12496250

σ2
α2 (B.168)

This provides a lower bound for β̂2.

β̂hi − β̂lo = α2
(1

σ2(−0.48 + .751σ2)2
− 12496250

σ2

)
(B.169)

=
α2

σ2

(1

(−0.48 + .751σ2)2
− 12496250

)
(B.170)

<
α2

σ2

(
95− 12496250

)
assuming σ2 < 1/2 (B.171)

< 0 (B.172)

The upper bound we require for β̂ is greater than the lower bound, therefore, no

β̂ will satisfy quasimonotonicity.

Lemma 8. If σ2 > 1
2
, for Flin to be quasimonotone, β+γ must not be strictly greater

than zero, i.e. β + γ��>0.

Proof. For this proof, we make use of the traditional definition of quasimonotonicity.

Consider

176

c =
1

2

√
σ2 − 1

2
(B.173)

y = [0, 0, c,−c] (B.174)

x = [0, 0, c, c] (B.175)

〈F (y), x− y〉 = 2cFb(y) = −2(β + γ)c2(1 + 2c2 + 2c2 − 2σ2) (B.176)

= −2(β + γ)c2(1 + σ2 − 1

2
− 2σ2) = −2(β + γ)c2(

1

2
− σ2) (B.177)

= 2(β + γ)c2 (σ2 − 1

2
)︸ ︷︷ ︸

>0

, (B.178)

〈F (x), x− y〉 = 2cFb(x) = −2(β + γ)c2 (σ2 − 1

2
)︸ ︷︷ ︸

>0

. (B.179)

If (β + γ) > 0, then this system is not quasimonotone. In either case, (β + γ)��>0.

Corollary 2 (Flin requires β+γ = 0 for quasimonotonicity.). Together, Lemmas 6, 7

and 8 imply that (β + γ) must be 0 to satisfy quasimonotonicity.

Lemma 9. If (β + γ) = 0 and α > 0, for Flin to be quasimonotone, β must not be

strictly greater than zero, i.e. β��>0.

Proof. For this proof, we make use of the traditional definition of quasimonotonicity.

Consider

177

y = [0, 0, cσ, 0], c > 1 (B.180)

x = [1, 0, (c−
√
c2 − 1)︸ ︷︷ ︸
>0

σ, 0] (B.181)

〈F (y), x− y〉 = Fw2(y)−
√
c2 − 1σFa(y) = ασ2

>0︷ ︸︸ ︷
(−1 + c2) (B.182)

〈F (x), x− y〉 = Fw2(x)−
√
c2 − 1σFa(x) (B.183)

= ασ2(−1 + (c−
√
c2 − 1)2)−

√
c2 − 1σ(8β(c−

√
c2 − 1)σ − 2α(c−

√
c2 − 1)σ)

(B.184)

= ασ2(−1 + (c−
√
c2 − 1)2 + 2(c−

√
c2 − 1)

√
c2 − 1)− 8(c−

√
c2 − 1)

√
c2 − 1σ2β

(B.185)

= ασ2(−1 + c2 − 2c
√
c2 − 1 + c2 − 1 + 2c

√
c2 − 1− 2(c2 − 1))− 8(c

√
c2 − 1− c2 + 1)σ2β

(B.186)

= −8 (c
√
c2 − 1− c2 + 1)︸ ︷︷ ︸

>0

σ2β. (B.187)

If (β + γ) = 0 and α > 0, then β ≤ 0 for the system to be quasimonotone.

Lemma 10. If (β + γ) = 0, for Flin to be quasimonotone, α must not be strictly

greater than zero, i.e. α��>0.

Proof. We will assume α > 0, which by Lemma 9 implies β ≤ 0. This will lead to a

contradiction. Consider

y = [1, 0, 4σ, 0] (B.188)

x = [0, 0, 2σ, 0] (B.189)

〈F (y), x− y〉 = −Fw2(y)− 2σFa(y) = −15ασ2 − 2σ(32σβ − 8σα) (B.190)

= ασ2 − 64βσ2, (B.191)

〈F (x), x− y〉 = −Fw2(x)− 2σFa(x) = −3ασ2. (B.192)

178

If (β+γ) = 0 and α > 0 (implies β ≤ 0), then 〈F (y), x−y〉 > 0 and 〈F (x), x−y〉 < 0,

which breaks quasimonotonicity. Therefore, α��>0.

Lemma 11. If (β + γ) = 0 and α < 0, for Flin to be quasimonotone, β must not be

strictly less than zero, i.e. β��<0.

Proof. Consider

y = [0, 0, cσ, 0], c > 1 (B.193)

x = [−1, 0, (c+
√
c2 − 1)σ, 0] (B.194)

〈F (y), x− y〉 = −Fw2(y) +
√
c2 − 1σFa(y) = −ασ2

>0︷ ︸︸ ︷
(−1 + c2) (B.195)

〈F (x), x− y〉 = −Fw2(x) +
√
c2 − 1σFa(x) (B.196)

= −ασ2(−1 + (c+
√
c2 − 1)2) +

√
c2 − 1σ(8β(c+

√
c2 − 1)σ + 2α(c+

√
c2 − 1)σ)

(B.197)

= ασ2(1− (c+
√
c2 − 1)2 + 2

√
c2 − 1(c+

√
c2 − 1)) + 8(c+

√
c2 − 1)

√
c2 − 1σ2β

(B.198)

= ασ2(1− c2 − c2 + 1− 2c
√
c2 − 1 + 2c

√
c2 − 1 + 2c2 − 2) (B.199)

+ 2
√
c2 − 1(c+

√
c2 − 1))β (B.200)

= 2
√
c2 − 1(c+

√
c2 − 1)︸ ︷︷ ︸

>0

β. (B.201)

If α < 0, then β ≥ 0 to maintain quasimonotonicity.

Lemma 12. If (β + γ) = 0, for Flin to be quasimonotone, α must not be strictly less

than zero, i.e. α��<0.

Proof. We will assume α < 0, which by 11 implies β ≥ 0. This will lead to a

contradiction.

179

y = [−1, 0, cσ, 0], c =
1

4
(B.202)

x = [0, 0, dσ, 0], d =
3

2
(B.203)

〈F (y), x− y〉 = Fw2(y) + (d− c)σFa(y) = ασ2

<0︷ ︸︸ ︷
(−1 + c2) +(d− c)σ(8cσβ + 2cσα)

(B.204)

= ασ2(−1 + c2 + 2c(d− c)) + 8c(d− c)σ2β (B.205)

= ασ2(−1− c2 + 2cd) + 8c(d− c)σ2β (B.206)

= − 5

16
ασ2 + 40σ2β, (B.207)

〈F (x), x− y〉 = Fw2(x) + (d− c)σFa(x) = ασ2 (−1 + d2)︸ ︷︷ ︸
>0

(B.208)

=
5

4
ασ2. (B.209)

If (β+γ) = 0 and α < 0 (implies β ≥ 0), then 〈F (y), x−y〉 > 0 and 〈F (x), x−y〉 < 0,

which breaks quasimonotonicity. Therefore, α ≥ 0.

Corollary 3. Together, Corollary 2 and Lemmas 9-12 imply that α must equal zero

for Flin to be quasimonotone.

Lemma 13. If (β + γ) = 0 and α = 0, for Flin to be quasimonotone, β must not be

strictly greater than zero, i.e. β��>0.

Proof. Consider

y = [1, 0, 1, 0] (B.210)

x = [1,−7, 2, 1] (B.211)

〈F (y), x− y〉 = −7Fw1(y) + Fa(y) + Fb(y) = 8β (B.212)

〈F (x), x− y〉 = −7Fw1(x) + Fa(x) + Fb(x) = 16β + 4β(2− 7) (B.213)

= −4β (B.214)

If β > 0, then this system is not quasimonotone. Therefore, β ≤ 0.

180

Lemma 14. If (β + γ) = 0 and α = 0, for Flin to be quasimonotone, β must not be

strictly less than zero, i.e. β��<0.

Proof. Consider

y = [1, 0, 2, 0] (B.215)

x = [1, 1, 1, 1] (B.216)

〈F (y), x− y〉 = Fw1(y)− Fa(y) + Fb(y) = −16β (B.217)

〈F (x), x− y〉 = Fw1(x)− Fa(x) + Fb(x) = −8β + 12β = 4β (B.218)

If β < 0, then this system is not quasimonotone. Therefore, β ≥ 0.

Corollary 4 ((β + γ) = 0, α = 0⇒ β = γ = 0). Together, Lemmas 13 and 14 imply

that β = 0, which, along with Corollary 2, imply that γ = 0 as well.

Corollary 5. [α = β = γ = 0] Together, Corollaries 2 and 3, and 4 imply that there

is no non-trivial linear combination that induces a quasimonotone LQ-GAN system.

Corollary 6. Fcc, Feg, Fcon, and F are not quasimonotone for the LQ-GAN system.

Proof. These maps are all linear combinations of F , JF and J>F , therefore, by

Corollary 5, they are not quasimonotone for the LQ-GAN system.

B.12 Analysis of the (w2, a)-Subsystem

Note that if a map is not quasimonotone for the (w2, a)-subsystem, then it is

not quasimonotone for the full system. This is because an analysis of the (w2, a)-

subsystem is equivalent to an analysis of a subspace of the full system with w1 = b = 0.

Proposition 14. F is not quasimontone for the (w2, a)-subsystem. Also, its Jacobian

is not Hurwitz.

181

Proof.

F =



−σ2 + a2 + b2

b

−2w2a

−2w2b− w1


(B.219)

y = [σ, 0, 3σ, 0] (B.220)

x = [3σ, 0, 5σ, 0] (B.221)

〈F (y), x− y〉 = 2σFw2(y) + 2σFa(y) = 2σ(−σ2 + 9σ2) + 2σ(−6σ2) (B.222)

= 4σ3 (B.223)

〈F (x), x− y〉 = 2σFw2(x) + 2σFa(x) = 2σ3(−1 + 25) + 2σ3(−30) (B.224)

= −12σ3 (B.225)

Therefore, F is not quasimonotone.

The Jacobian of F for the (w2, a)-subsystem is

Jw2,a =

 0 2a

−2a −2w2

 . (B.226)

The trace of Jw2,a is strictly negative for w2 > 0, which implies Jw2,a has an eigenvalue

with strictly negative real part. Therefore, Jw2,a is not Hurwitz.

Proposition 15. Freg is not quasimonotone for the (w2, a)-subsystem. Also, its Ja-

cobian is not Hurwitz.

182

Proof.

Freg =



−σ2 + a2 + b2

b

−2w2a+ 4ηa(−σ2 + a2 + b2)

−2w2b− w1 + 4ηb(−σ2 + a2 + b2) + 2ηb


(B.227)

In order for a system to be quasimonotone, we require condition (A) (among other

properties). We will now show that this property is not satisfied for the gradient-

regularized system.

Consider the point x = [w2, 0, a, 0] and let v be defined as follows:

v = [2w2a
2 + 4ηa2(σ2 − a2), 0, a(a2 − σ2), 0] (B.228)

where v is actually derived by considering the field formed by crossing the curl for

the 2-D subspace with w2 and a only.

F>regv is 0 as expected.

F>regv = −2w2a
2(σ2 − a2)− 4ηa2(σ2 − a2)2 + 2w2a

2(σ2 − a2) + 4ηa2(σ2 − a2)2

(B.229)

= 0 (B.230)

It suffices to consider the submatrix of the Jacobian corresponding to w2 and a

only when computing v>Jv:

183

1

2
v>Jreg =

[
2w2a

2 + 4ηa2(σ2 − a2) a(a2 − σ2)

] 0 a

−a −w2 − 2η(σ2 − 3a2)


(B.231)

=

[
−a2(a2 − σ2) 2w2a

3 + 4ηa3(σ2 − a2)− w2a(a2 − σ2) + 2ηa(a2 − σ2)(3a2 − σ2)

]
(B.232)

=

[
−a2(a2 − σ2) w2a(a2 + σ2) + 2ηa(a2 − σ2)2

]
(B.233)

1

2
v>Jregv =

[
−a2(a2 − σ2) w2a(a2 + σ2) + 2ηa(a2 − σ2)2

]2w2a
2 + 4ηa2(σ2 − a2)

a(a2 − σ2)


(B.234)

= −2w2a
4(a2 − σ2) + 4ηa4(a2 − σ2)2 + w2a

2(a2 + σ2)(a2 − σ2) + 2ηa2(a2 − σ2)3

(B.235)

= w2a
2(a2 − σ2)[−2a2 + (a2 + σ2)] + 2ηa2(a2 − σ2)2[2a2 + (a2 − σ2)]

(B.236)

= −w2a
2(a2 − σ2)2 + 2ηa2(a2 − σ2)2(3a2 − σ2) (B.237)

If w2 > 0 and a < σ√
3
, then there isn’t an η ≥ 0 that will make this system

quasimonotone.

The Jacobian of Fw2,a
reg for the (w2, a)-subsystem is

Jw2,a
reg =

 0 2a

−2a −2w2 − 4η(σ2 − 3a2)

 . (B.238)

The trace of Jw2,a is strictly negative for w2 > 0 and a < σ/
√

3, which implies Jw2,a
reg

has an eigenvalue with strictly negative real part. Therefore, Jw2,a
reg is not Hurwitz.

Proposition 16. Funr is not quasimonotone or Hurwitz for the (w2, a)-subsystem.

Also, its Jacobian is not Hurwitz.

184

Proof. We consider Unrolled GAN as described in [76]. Some of the necessary arith-

metic can be found in the supplementary Mathematica notebook. Define the discrim-

inator’s update as

w2,k+1 = w2,k − αFw2(w2,k, ak) = Uk(w2,k), (B.239)

where α > 0 is a step size, and denote the composition of U , ∆k-times as

U∆k
k (w2,k) = Uk(· · · (Uk(Uk(w2,k)) · · ·) (B.240)

where ∆k is some positive integer. Then the update for Unrolled GANs is

w2,k+1 = w2,k − α
∂V (w2,k, ak)

∂w2

(B.241)

ak+1 = ak − α
∂V (U∆k

k (w2,k), ak)

∂a
. (B.242)

In the case of the (w2, a)-subsystem, we can write these unrolled updates out explicitly.

Remember F = [a2 − σ2,−2aw2], so

Uk(w1,k) = w2,k − α(a2
k − σ2), (B.243)

U∆k
k (w2,k), ak) = w2,k − α∆k(a2

k − σ2). (B.244)

Plugging this back in, we findw2,k+1

ak+1

 =

w2,k

ak

− αFunr, (B.245)

where the corresponding map is

Funr =

 a2 − σ2

4α∆ka3 − 2a(2α∆kσ2 + w2)

 . (B.246)

185

We will use the following vector to test condition (A) for quasimonotonicity of Funr:

v =

 0 1

−1 0

Funr. (B.247)

Computing v>Junrv and evaluating at (w2 = 1, a = σ2
√

3
) gives

v>Junrv = −8

9
σ4 < 0, (B.248)

therefore, Funr is not quasimonotone.

If we examine the determinant of Junr and evaluate it at a = σ√
3
, we get

Det[Junr]
∣∣∣
a= σ√

3

= −2w2, (B.249)

which is less than zero for positive w2. Therefore, the Jacobian exhibits negative

eigenvalues which means the system is not Hurwitz.

Proposition 17. Falt is not quasimonotone or Hurwitz for the (w2, a)-subsystem.

Also, its Jacobian is not Hurwitz.

Proof. We consider an alternating gradient descent scheme. Some of the necessary

arithmetic can be found in the supplementary Mathematica notebook. First, we begin

with the case where the discriminator updates first. The updates are

w2,k+1 = w2,k − α(a2
k − σ2) (B.250)

ak+1 = ak − α(−2akw2,k+1) (B.251)

= ak − α(−2akw2,k + 2akα(a2
k − σ2)) (B.252)

= ak − α(2αa3
k − 2ak(ασ

2 + w2,k)), (B.253)

186

where α > 0 is a step size. The corresponding map is

Falt =

 a2 − σ2

2αa3 − 2a(ασ2 + w2)

 . (B.254)

Note the similarity to the Unrolled GAN map Equation (B.246). The maps are

equivalent if ∆k = 1/2. Unrolled GANs was shown to be not quasimonotone for any

∆k, therefore, Falt is not quasimonotone as well.

If we examine the trace of Jalt and evaluate it at (w2 = 5ασ2, a = σ), we get

Tr[Jalt]
∣∣∣
(w2=5ασ2,a=σ)

= −6ασ2, (B.255)

which is strictly negative. Therefore, the Jacobian exhibits negative eigenvalues which

means the system is not Hurwitz.

Now, consider the generator updating first. The updates are

w2,k+1 = w2,k − α(a2
k+1 − σ2) (B.256)

= w2,k − α((ak − α(−2akw2,k))
2 − σ2) (B.257)

ak+1 = ak − α(−2akw2,k), (B.258)

where the corresponding map is

Falt′ =

 a2 − σ2

2αa3 − 2a(ασ2 + w2)

 . (B.259)

Testing for condition (A) as before (see Equations (B.246)- (B.248)), we find that

v>Jalt′v = −1

2
σ4w2 + 4ασ4w2

2 + 16c2σ4w3
2 + 16c3σ4w4

2 + 8c4σ4w5
2. (B.260)

187

Using Descartes’ Rule of Signs [29], we can determine that this expression has exactly

one positive root for w2. This implies that v>Jalt′v changes sign locally around this

root when varying w2, which means v>Jalt′v < 0 for some positive w2. Therefore Falt′

is not quasimonotone.

If we examine the determinant of Jalt′ and evaluate it at (w2 = 1, a = σ), we get

Det[Jalt′]
∣∣∣
(w2=1,a=σ)

= −8α(1 + 2α(2 + α(2 + α)))σ2, (B.261)

which is less than zero for positive w2. Therefore, the Jacobian exhibits negative

eigenvalues which means the system is not Hurwitz.

B.12.1 Monotonicity of Fcc, Feg, and Fcon for the (w2, a)-Subsystem

The following propositions concern the monotonicity of Fcc, Feg, and Fcon for the

(w2, a)-subsystem. The field and Jacobian for Flin will be helpful for proofs of their

properties.

Fw2,a
lin =

 α(−σ2 + a2) + 4(β + γ)w2a
2

2a(β + γ)(−σ2 + a2) + 4(β − γ)w2
2a− 2αw2a

 (B.262)

Jw2,a
lin =

 4(β + γ)a2 2αa+ 8(β + γ)w2a

8(β − γ)w2a− 2αa 2(β + γ)(−σ2 + 3a2) + 4(β − γ)w2
2 − 2αw2

 (B.263)

Proposition 18. Fcon = F + βJ>F is not quasimontone for the (w2, a)-subsystem.

Also, its Jacobian is not Hurwitz.

Proof. This corresponds to Flin with α = 1, β = β, γ = 0. We consider three cases.

Let

188

Fw2,a
con =

 (−σ2 + a2) + 4βw2a
2

2aβ(−σ2 + a2) + 4βw2
2a− 2w2a

 , (B.264)

Jw2,a
con =

 4βa2 2a+ 8βw2a

8βw2a− 2a 2β(−σ2 + 3a2) + 4βw2
2 − 2w2

 , (B.265)

v =

0 −1

1 0


 (−σ2 + a2) + 4βw2a

2

2aβ(−σ2 + a2) + 4βw2
2a− 2w2a

 (B.266)

=

−2aβ(−σ2 + a2)− 4βw2
2a+ 2w2a

(−σ2 + a2) + 4βw2a
2

 . (B.267)

Case 1: Consider x = [0, 2σ]. Then

v>Jw2,a
con v = 18βσ6(11 + 128β2σ2), (B.268)

which implies β ≥ 0 for the system to be quasimonotone.

Case 2: Consider x = [0, 1/2σ]. Then

v>Jw2,a
con v =

9

32
βσ6(−1 + 2β2σ2), (B.269)

which, combined with above, implies β ≥ 1√
2σ
≈ 0.707

σ
for the system to be quasi-

monotone.

189

Case 3: Consider x = [2σ, σ]. Then

v>Jw2,a
con v = 64βσ6(1 + 4βσ(1− 7βσ)). (B.270)

The quantity in parentheses must be positive for this system to be quasimonotone.

This quantity is a concave quadratic form with an upper root of ≈ 0.273
σ

. This implies

β ≤≈ 0.273
σ

for the system to be quasimonotone.

The last two results cannot be satisfied by a single β, therefore, this system is not

quasimonotone.

For completeness, we analyze the limit where the F term is ignored. Consider

a = cσ.

v>Jw2,a
con v = 16c4(1 + 6c2 − 119c4)σ8 (B.271)

This is negative for c = 1, therefore, this system is not quasimonotone.

The trace of Jw2,a
con is strictly negative for w2 = 0 and a < σ/

√
5, which implies Jw2,a

con

has an eigenvalue with strictly negative real part. Therefore, Jw2,a
con is not Hurwitz.

Proposition 19. Fcon = βJ>F is not quasimontone for the (w2, a)-subsystem. Also,

its Jacobian is not Hurwitz.

Proof. This corresponds to Flin with α = 0, β = β, γ = 0. We consider two cases.

Fw2,a
con =

 4βw2a
2

2aβ(−σ2 + a2) + 4βw2
2a

 (B.272)

190

Jw2,a
con =

 4βa2 8βw2a

8βw2a 2β(−σ2 + 3a2) + 4βw2
2

 (B.273)

v =

0 −1

1 0


 4βw2a

2

2aβ(−σ2 + a2) + 4βw2
2a

 (B.274)

=

−2aβ(−σ2 + a2)− 4βw2
2a

4βw2a
2

 (B.275)

Case 2: Consider x = [0, cσ]. Then

v>Jw2,a
con v = 16β3c4σ8(c2 − 1)2 (B.276)

which, for c 6= 1, implies β ≥ 0 for the system to be quasimonotone.

Case 2: Consider x = [2cσ, cσ]. Then

v>Jw2,a
con v = −16β3c4σ8(−1− 6c2 + 119c4) (B.277)

which, for c = 1, implies β ≤ 0 for the system to be quasimonotone. Combined with

above, this implies β = 0 for the system to be quasimonotone. In conclusion, βJ>F

is not quasimonotone.

The trace of Jw2,a
con is strictly negative for w2 = 0 and a < σ/

√
5, which implies Jw2,a

con

has an eigenvalue with strictly negative real part. Therefore, Jw2,a
con is not Hurwitz.

191

Proposition 20. Feg = F − γJF requires γ →∞ to be pseudomonotone for (w2, a)-

subsystem

Proof. This corresponds to Flin with α = 1, β = 0, γ = γ. We consider two cases.

Fw2,a
eg =

 (−σ2 + a2) + 4γw2a
2

2aγ(−σ2 + a2)− 4γw2
2a− 2w2a

 (B.278)

Jw2,a
eg =

 4γa2 2a+ 8γw2a

−8γw2a− 2a 2γ(−σ2 + 3a2)− 4γw2
2 − 2w2

 (B.279)

v =

0 −1

1 0


 (−σ2 + a2) + 4γw2a

2

2aγ(−σ2 + a2)− 4γw2
2a− 2w2a

 (B.280)

=

−2aγ(−σ2 + a2) + 4γw2
2a+ 2w2a

(−σ2 + a2) + 4γw2a
2

 (B.281)

Case 1: Consider y = [σ, 3σ] and x = [3σ, 5σ]. Then

〈F (y), x− y〉 = 2σFw2(y) + 2σFa(y) = 2σ3
[
8 + 36γσ + 48γσ − 12γσ − 6

]
(B.282)

= 4σ3(1 + 36σγ) (B.283)

〈F (x), x− y〉 = 2σFw2(x) + 2σFa(x) = 12σ3(−1 + 60σγ) (B.284)

Then γ ≤ − 1
36σ
≈ −0.027

σ
or γ ≥ 1

60σ
≈ 0.017

σ
for the system to be quasimonotone.

Case 2: Consider y = [σ, 20σ] and x = [20σ, 5σ]. Then

192

〈F (y), x− y〉 = 19σFw2(y)− 15σFa(y) = σ3(8181− 207800σγ) (B.285)

〈F (x), x− y〉 = 19σFw2(x)− 15σFa(x) = 32σ3(108 + 4825σγ) (B.286)

Then γ ≥ 8181
207800σ

≈ 0.039
σ

or γ ≥ 108
4825σ

≈ −0.022
σ

for the system to be quasimonotone.

The latter condition is more lenient, so the former is unnecessary.

For the system to be quasimonotone in both scenarios, we require that γ ≥ 1
60σ

.

This implies γ must be arbitrarily large for small σ. In the limit, the effect of F on

the system is negligible. We consider this limit next.

Proposition 21. Feg = −γJF is pseudomonotone for (w2, a)-subsystem.

Proof. Consider x = [w2, cσ] w.l.o.g.

Note this system is 2-D, therefore, there is only 1 vector v (aside from scaling)

that is perpendicular to F .

v>Jv = 16c4σ6((−1 + c2)2σ2 + 2(1 + c2)w22) ≥ 0 ∀ c > 0, w2 (B.287)

〈F (x), x− x∗〉 = 2cσ2((−1 + c)2(1 + c)σ2 + 2w2
2) ≥ 0 ∀ c > 0, w2 (B.288)

This satisfies conditions (A) and (C), therefore, this system is pseudomonotone.

Proposition 22. Feg = F − γJF is pseudomonotone for the constrained (w2, a)-

subsystem.

Proof. We consider α = 1 in this case and let the user define a feasible region for which

they are confident the equilibrium exists: w2 ∈ [wmin
2 , wmax

2] and a ∈ [amin, amax]—the

most important bounds being those on a. We will attempt to find a value for γ that

ensures the system is pseudomonotone within this region.

193

A partially sufficient (and necessary) condition for pseudomonotonicity is the fol-

lowing (see condition (C)).

〈F (x), x− x∗〉 = 2γ
(
a(a− σ)2(a+ σ) + 2aσw2

2

)
− (a− σ)2w2 ≥ 0 (B.289)

⇒ γ ≥

a1︷ ︸︸ ︷
(a− σ)2w2

2
(
a(a− σ)2(a+ σ)︸ ︷︷ ︸

a0

+ 2aσ︸︷︷︸
a2

w2
2

) (B.290)

We can find the w2 that maximizes this equation for a given a by setting the

derivative equal to zero and taking the positive root of the resulting quadratic. The

denominator of the derivative is non-negative and only zero at equilibrium—this is

not a concern because 〈F (x), x− x∗〉 = 0 at equilibrium. Continuing and looking at

the numerator of the derivative, we find

0 = a1(a0 + a2d
2)− 2a1a2d

2 (B.291)

= a1(a0 − a2d
2) (B.292)

d∗ =
√
a0/a2 (B.293)

=

√
(a− σ)2(a+ σ)

2σ
. (B.294)

If we plug that back into the lower bound for γ, we get

γ ≥ |a− σ|
3
√
a+ σ/

√
2σ

4a(a− σ)2(a+ σ)
(B.295)

=
|a− σ|

4
√

2aσ1/2
√
a+ σ

≤ amax

4
√

2a2
min

(B.296)

≥ amax

4
√

2a2
min

(B.297)

194

The condition above along with the following (see condition (A)) are sufficient to

ensure pseudomonotonicity.

v>Jv = 16a4γ3((a2 − σ2)2 + 2w2
2(a2 + σ2)) (B.298)

+ 16γ2w2a
2(2σ2w2

2 + (a2 − σ2)2) (B.299)

+ 2γ((a2 − σ2)2(3a2 − σ2) + w2
2(8a2σ2 − 2(a2 − σ2)2)) (B.300)

− 2w2(a2 − σ2)2 (B.301)

If w2 ≤ 0, then this quantity is greater than or equal to zero due to the result in

equation (B.287), which we have already shown to be greater than zero. Therefore,

we focus on w2 > 0. We can divide the analysis into two cases.

Consider 3a2 ≥ σ2. In this case, all coefficients of γ terms except a γ1 term and

the last term (the constant) are positive. For simplicity, we can find the value for γ

such that the first part of the β2 coefficient is greater than the two negative terms.

16w2a
2γ2(a2 − σ2)2 − 4γw2

2(a2 − σ2)2 − 2w2(a2 − σ2)2 (B.302)

= 2w2(a2 − σ2)(8a2γ2 − 2w2γ − 1) ≥ 0 (B.303)

⇒γ ≥ 2w2 +
√

4w2
2 + 4(8a2)

16a2
≤ w2

8a2
+
w2 +

√
8a

8a2
(B.304)

⇒ γ ≥ wmax
2

4a2
min

+
1

2
√

2amin

(B.305)

Now consider 3a2 < σ2. One of the terms in the γ1 coefficient is now negative.

We will find a value for γ such that the γ3 term can drown out that negative term.

195

16a4γ3(a2 − σ2)2 − 2γ(a2 − σ2)2(σ2 − 3a2) (B.306)

≥ 2γ(a2 − σ2)2(8a4γ2 − σ2) (B.307)

⇒γ ≥ σ

2
√

2a2
(B.308)

⇒γ ≥ amax

2
√

2a2
min

(B.309)

Combining the results, we have that

γ ≥ max
{ amax

2
√

2a2
min

,
wmax

2

4a2
min

+
1

2
√

2amin

}
(B.310)

Note this bound is not tight; it is just meant to provide a satisfactory estimate.

Proposition 23. Fcc = F + β(J> − J)F requires β →∞ to be pseudomonotone for

the (w2, a)-subsystem.

Proof. This corresponds to Flin with α = 1, γ = β/2, β = β/2.

Fw2,a
cc =

 (−σ2 + a2) + 4βw2a
2

2aβ(−σ2 + a2)− 2w2a

 (B.311)

Jw2,a
cc =

4βa2 2a+ 8βw2a

−2a 2β(−σ2 + 3a2)− 2w2

 (B.312)

196

v =

0 −1

1 0


 (−σ2 + a2) + 4βw2a

2

2aβ(−σ2 + a2)− 2w2a

 (B.313)

=

−2aβ(−σ2 + a2) + 2w2a

(−σ2 + a2) + 4βw2a
2

 (B.314)

Case 1: Consider x = [0, 2σ]. Then

v>Jw2,a
cc v = 18βσ6(11 + 128β2σ2) (B.315)

implies that β ≥ 0.

Case 2: Consider x = [0, 1/2σ]. Then

v>Jw2,a
cc v =

9

32
βσ6(−1 + 2β2σ2) (B.316)

this, combined with above, implies that β ≥ 1√
2σ

.

This implies β must be arbitrarily large for small σ. In the limit, the effect of F

on the system is negligible. We consider this limit in Subsection 24.

Proposition 24. Fcc = (J> − J)F is pseudomonotone for the (w2, a)-subsystem.

Proof.

Fw2,a
cc = [8w2a

2, 4a(a2 − σ2)] (B.317)

Jw2,a
cc =

8a2 16w2a

0 4(3a2 − σ2)

 (B.318)

Note that the skew part of the Jacobian of F is full rank except at the boundary

(a = 0), so Fcc = (J> − J)F maintains the same fixed points. This can be seen by

looking at Fcc above. We will simply need to constrain a to be greater than 0.

197

In order for a system to be quasimonotone, we require condition (A) (among other

properties). We will now show that this property is satisfied for the (w2, a)-subsystem.

Case 1: Consider the point x = [w2, a] and let v be defined as follows:

v = F = [−σ2 + a2,−2w2a]>. (B.319)

v>Fw2,a
cc is 0 as expected.

v>Fw2,a
cc = −8w2a

2σ2 + 8w2a
4 − 8w2a

4 + 8w2a
2σ2 (B.320)

= 0 (B.321)

Now, we will compute v>Jw2,a
cc v to see if it is greater than zero.

v>Jw2,a
cc =

[
−σ2 + a2 −2w2a

]8a2 16w2a

0 4(3a2 − σ2)

 (B.322)

=

[
−8σ2a2 + 8a4 16w2a(a2 − σ2)− 8w2a(3a2 − σ2)

]
(B.323)

=

[
8a2(a2 − σ2) −8w2a(a2 + σ2)

]
(B.324)

v>Jw2,a
cc v =

[
8a2(a2 − σ2) −8w2a(a2 + σ2)

]−σ2 + a2

−2w2a

 (B.325)

= 8a2(a2 − σ2)2 + 16w2
2a

2(a2 + σ2) ≥ 0 (B.326)

In addition to this, proving that 〈F (x), x − x∗〉 ≥ 0 is sufficient for proving con-

dition (C).

198

〈Fw2,a
cc (y), y − x∗〉 = 8w2a

2w2 + 4a(a2 − σ2)(a− σ) ≥ 0 (B.327)

The last two terms of the sum are always the same sign due to the square function

being “monotone” and the fact that a is constrained to be non-negative. Therefore,

Fcc is pseudomonotone.

Proposition 25. Fcc = F + β(J> − J)F is pseudomonotone for the constrained

(w2, a)-subsystem.

Proof. We consider α = 1 in this case and let the user define a feasible region for which

they are confident the equilibrium exists: w2 ∈ [wmin
2 , wmax

2] and a ∈ [amin, amax]—the

most important bounds being those on a. We will attempt to find a value for β that

ensures the system is pseudomonotone within this region.

A partially sufficient (and necessary) condition for pseudomonotonicity is the fol-

lowing (see condition (C)).

〈F (x), x− x∗〉 = 2β
(
a(a− σ)2(a+ σ) + 2a2w2

2

)
− (a− σ)2w2 ≥ 0 (B.328)

⇒ β ≥

a1︷ ︸︸ ︷
(a− σ)2w2

2
(
a(a− σ)2(a+ σ)︸ ︷︷ ︸

a0

+ 2a2︸︷︷︸
a2

w2
2

) (B.329)

We can find the w2 that maximizes this equation for a given a by setting the

derivative equal to zero and taking the positive root of the resulting quadratic. The

denominator of the derivative is non-negative and only zero at equilibrium—this is

not a concern because 〈F (x), x− x∗〉 = 0 at equilibrium. Continuing and looking at

the numerator of the derivative, we find

199

0 = a1(a0 + a2d
2)− 2a1a2d

2 (B.330)

= a1(a0 − a2d
2) (B.331)

d∗ =
√
a0/a2 (B.332)

=

√
(a− σ)2(a+ σ)

2a
. (B.333)

If we plug that back into the lower bound for β, we get

β ≥ |a− σ|
3
√
a+ σ/

√
2a

4a(a− σ)2(a+ σ)
(B.334)

=
|a− σ|

4
√

2a3/2
√
a+ σ

≤ amax

4
√

2a2
min

(B.335)

≥ amax

4
√

2a2
min

(B.336)

The condition above along with the following (see condition (A)) are sufficient to

ensure pseudomonotonicity.

v>Jv = 16a4β3((a2 − σ2)2 + 2w2
2(a2 + σ2)) (B.337)

+ 32β2w3
2a

4 (B.338)

+ 2β((a2 − σ2)2(3a2 − σ2) + 8a4w2
2) (B.339)

− 2w2(a2 − σ2)2 (B.340)

If w2 ≤ 0, then this quantity is greater than or equal to zero due to the result in

equation (B.326), which we have already shown to be greater than zero. Therefore,

we focus on w2 > 0. We can divide the analysis into two cases.

200

Consider 3a2 ≥ σ2. In this case, all coefficients of β terms except the last term

(the constant) are positive. For simplicity, we can find the value for β such that the

first part of the β3 coefficient is greater than the last term (the constant).

16a4β3(a2 − σ2)2 − 2w2(a2 − σ2)2 ≥ 0 (B.341)

⇒β ≥ 1

2

(wmax
2

a4
min

)1/3

(B.342)

Now consider 3a2 < σ2. One of the terms in the β1 coefficient is now negative. We

will find a value for β such that the β3 term can drown out the two negative terms.

16a4β3(a2 − σ2)2 − 2β(a2 − σ2)2(σ2 − 3a2)− 2w2(a2 − σ2)2 (B.343)

=
(a2 − σ2)2

16a4

[
β3 − 2(σ2 − 3a2)

16a4
β − 2w2

16a4

]
(B.344)

≥ (a2 − σ2)2

16a4

[
β3 − σ2

8a4︸︷︷︸
a0

β − w2

8a4︸︷︷︸
a1

]
(B.345)

=
(a2 − σ2)2

16a4

[
3a

1/2
0 a

2/3
1 + 2a1a

2/3
2

]
for β = a

1/2
0 + a

1/3
1 (B.346)

≥ 0 (B.347)

⇒β ≥ a
1/2
0 + a

1/3
1 =

1

2
√

2

amax

a2
min

+
1

2

(wmax
2

a4
min

)1/3

(B.348)

This last lower bound is the greatest of the three, so it suffices to set β greater

than this value to ensure the system is pseudomonotone within the given feasible

region.

Proposition 26. Flin is not monotone for the (w2, a)-subsystem (before scaling).

201

Proof. Let Fw2,a
lin be defined as follows:

(αI + βJ> − γJ)F =

 α −2(β + γ)a

2(β + γ)a α− 2(β − γ)w2


−σ2 + a2

−2w2a

 (B.349)

=

 α(−σ2 + a2) + 4(β + γ)w2a
2

2a(β + γ)(−σ2 + a2) + 4(β − γ)w2
2a− 2αw2a.

 (B.350)

Its Jacobian is then

Jw2,a
lin =

 4(β + γ)a2 2αa+ 8(β + γ)w2a

8(β − γ)w2a− 2αa 2(β + γ)(−σ2 + 3a2) + 4(β − γ)w2
2 − 2αw2

 (B.351)

Jsym =

4(β + γ)a2 8βw2a

8βw2a 2(β + γ)(−σ2 + 3a2) + 4(β − γ)w2
2 − 2αw2

 (B.352)

The trace of the symmetrized Jacobian must be non-negative to ensure monotonicity

because a negative trace implies the existence of a negative eigenvalue:

Tr = 2(β + γ)(−σ2 + 5a2) + 4(β − γ)w2
2 − 2αw2 ≤ 0 ∀a < σ√

5
, w2 = 0. (B.353)

Assume β + γ > 0. If a < σ/
√

5 and w2 = 0, then the trace is less than zero.

Assume β + γ < 0. If a > σ/
√

5 and w2 = 0, then the trace is less than zero.

Assume γ = −β. Then

Tr = 8βw2
2 − 2αw2 = 2w2(4βw2 − α). (B.354)

If w2 < 0, then β ≤ α
4w2

. If w2 > 0, then β ≥ α
4w2

. Therefore, β = α
4w2

, however,

β and α are constants while w2 is a variable. Therefore, α and β must equal zero to

satisfy this for all w2 proving that no monotone linear combination exists.

202

Proposition 27. Flin is not Hurwitz for the (w2, a)-subsystem.

Proof. Consider Jw2,a
lin at w2 = 0.

Jw2,a
lin =

4(β + γ)a2 2αa

−2αa 2(β + γ)(−σ2 + 3a2)

 (B.355)

Tr = 2(β + γ)(5a2 − σ2) (B.356)

Det = 8(β + γ)2(−σ2 + 3a2)a2 + 4α2a2 (B.357)

If β + γ < 0, then a > σ/
√

5 implies the existence of an eigenvalue with negative

real part. If β + γ > 0, then a < σ/
√

5 implies the existence of an eigenvalue with

negative real part. If β + γ = 0, then the real part is zero.

Proposition 28. There exists an Flin′ family after scaling by 1/4a2 that exhibits strict-

monotonicity.

Proof. If we consider the same linear combinations above, but divide F by 4a2, we

can obtain a family of monotone fields (see Mathematica notebook).

The trace of the corresponding symmetrized Jacobian is

Tr =
(β + γ)(3a2 + σ2) + αw2 + 2(γ − β)w2

2

2a2
. (B.358)

For constant β and γ and nonzero α, there exists a value for w2 that will force the

trace to be negative, therefore α must be zero. Note that γ must be greater than or

equal to β to ensure that the trace cannot be made negative in the limit as w2
2 grows

to infinity.

Case 1: Consider the case where β = γ. Then for any fixed β, γ, and nonzero α,

203

w2 = −(3a2 + σ2)
β + γ

α
− α (B.359)

will cause the trace to be negative.

Case 2: Otherwise, consider solving the quadratic form for w2 when β + γ > 0:

w2 =
−α±

√
α2 − 8(3a2 + σ2)(γ − β)(β + γ)

4(γ − β)
. (B.360)

For the trace to be non-negative, we need the leading coefficient of the quadratic

to be positive, i.e., γ − β > 0. We also need there to be at most 1 real root, meaning

the square root must be non-positive. If β + γ > 0, then setting a and σ using the

following formula will force the root to be positive:

3a2 + σ2 <
α2

8(γ − β)(β + γ)
(B.361)

For example, set a = σ, and then set σ and w2 as follows to force the trace to be

negative:

σ =
3

4

α√
32(γ − β)(β + γ)

, (B.362)

w2 = − α

4(γ − β)
. (B.363)

Case 3: If β + γ ≤ 0, then the root is necessarily positive. Therefore, α must be

set to zero.

204

The field and Jacobian are now wieldy enough to state:

Fw2,a
lin′ = (β + γ)

[
w2,

(a−σ)(a+σ)
2a

− 4
(
γ−β
β+γ

)(
w2

2

a

)]
, (B.364)

and

Jw2,a
lin′ = (β + γ)

 1 0

−2
(
γ−β
β+γ

)(
w2

a

)
1
2

+ σ2

2a2
+
(
γ−β
β+γ

)(
w2

2

a2

)
 . (B.365)

The trace is now

Tr =
(β + γ)(3a2 + σ2) + 2(γ − β)w2

2

2a2
, (B.366)

and is non-negative as long as both β + γ ≥ 0 and γ − β ≥ 0.

The determinant is

Det =
(β + γ)2(a2 + σ2) + 4(γ − β)βw2

2

2a2
, (B.367)

which is non-negative as long as, in addition to the previous conditions, we have

β ≥ 0. The trace and determinant are both strictly positive if β + γ > 0.

In summary, Fw2,a
lin′ is strictly-monotone, i.e., Jw2,a

lin′ � 0, if γ ≥ β ≥ 0 and γ > 0.

Corollary 7. The Flin′ family includes Feg′ (γ = γ, β = 0) and Fcc′ (γ = β). By

Proposition 28, Feg′ and Fcc′ are at least strictly-monotone.

Proposition 29. Fw2,a
cc′ is 1/2-strongly monotone and Fw2,a

eg′ is only strictly-monotone.

205

Proof. We will look at both maps individually.

Case Fw2,a
cc′ : The eigenvalues of Jw2,a

cc′ are λ1 = 1 and λ2 = 1
2

(
1 + σ2

a2

)
. Therefore,

Jw2,a
cc′ � 1

2
and Fw2,a

cc′ is 1/2-strongly monotone.

Case Fw2,a
eg′ : The eigenvalues of a 2×2 matrix can be written in terms of the trace

and determinant as

λ1,2 =
Tr ±

√
Tr2 − 4Det

2
(B.368)

=
Tr

2

(
1±

√
1− 4Det

Tr2

)
. (B.369)

Therefore, if the term 4Det
Tr2

can be made arbitrarily small, then one of the eigen-

values can made arbitrarily close to zero. On the other hand, if this quantity has a

finite lower bound, then the eigenvalues are lower bounded as a constant multiple of

the trace.

The trace and determinant of Jw2,a
eg′ are

Tr =
1

2

(
3 +

σ2

a2

)
+
w2

2

a2
(B.370)

Det =
1

2

(
1 +

σ2

a2

)
. (B.371)

and the quantity, Q, described is

Q =
8a2(a2 + σ2)

(3a2 + σ2 + 2w2
2)2

. (B.372)

This term can be made arbitrarily small as w2 goes to infinity. To be more rigorous,

let a = σ = 1 so that Tr = 2 + w2
2 and Det = 1. Then

206

λ1,2 =
1

2
(w2

2 + 2)
(

1−

√
1− 4

w2
2 + 2

)
(B.373)

=
1

2

top︷ ︸︸ ︷(
1−

√
1− 4

w2
2 + 2

)
(w2

2 + 2)−1︸ ︷︷ ︸
bot

. (B.374)

An application of L’Hopital’s rule shows that

lim
w2→∞

∂top/∂w2

∂bot/∂w2

=
4

(w2
2 + 2)

√
1− 4

(w2
2+2)2

= 0. (B.375)

The minimum eigenvalue only approaches zero in the limit, so Fw2,a
eg′ is strictly-

monotone.

Claim 3. Fw2,a
cc′ is the gradient of the following convex function: fw2,a

cc′ = w2
2 +

1/2
(

(a2 − σ2)− σ2 log(a
2

σ2

)
.

Proof. The Jacobian of Fw2,a
cc′ is symmetric and PSD, therefore it is the Hessian of

some convex function. We can integrate Fw2,a
cc′ to arrive at a convex function (with

arbitrary constant). Integrating Fw2,a
cc′ results in the following:

fw2,a
cc′ = w22 + 1/2

(
(a2 − σ2)− σ2 log

(a2

σ2

))
(B.376)

Note that fw2,a
cc′ must be convex along the subspace with w2 = 0 as well, which implies

that

g(a||σ) = 1/2
(

(a2 − σ2)− σ2 log
(a2

σ2

))
(B.377)

is convex as well. This function is of individual interest because it may serve as a

preferred alternative to KL-divergence.

207

B.13 Progressive Learning of LQ-GAN

Here, we consider the stochastic setting where the GAN is trained using samples

from p(y) and p(z). There are two ways to learn both the mean and variance of a

distribution using Fw2,a
cc . One is to first learn the mean to a high degree of accuracy,

then stop learning the mean and start learning the variance. The other is to keep

learning the mean with an appropriate weighting of the two systems to maintain

stability. We discuss the former option first.

Proposition 30. Assume all y ∼ p(y) lie in [ylow, yhi]. After k >
(

yhi−ylow
−|µ|+
√
µ2+dσ2

)2
log[

√
2

δ1/2
]

iterations, with probability, 1 − δ, the (w1, b)-subsystem can be “shut-off” and the

(w2, a)-subsystem safely “turned-on” resulting in a 1/2-strongly-monotone Fw2,a
cc′ .

Proof. We begin by observing the symmetrized Jacobian of Fw2,a
cc′ :

Jw2,a
cc′ =

1 0

0 a2−b2+µ2+σ2

2a2

 =

1 0

0 G
2a2

+ 1
2

 , (B.378)

where G = µ2 +σ2−b2. In order for Fw2,a
cc′ to be strongly monotone, we require G ≥ 0.

In other words, the square of the generator’s estimate of the mean, bk, learned from

training the (w1, b)-subsystem needs to be less than or equal to µ2 + σ2.

Assume we are using Fw1,b
cc′ with step size ρk = 1

k+1
to train the (w1, b)-subsystem.

Note that this was shown equivalent to the standard running mean in Proposition 13.

Therefore, bk = Z = 1
K

∑k
i=1 yi. Also, E[Z] = µ. Then, using Hoeffding’s inequality,

we find

Pr(|Z − E[Z]| ≥ t) ≤ 2e
− 2kt2

(yhi−ylow)2 (B.379)

⇒ Pr(|bk − µ| < t) ≥ 1− 2e
− 2kt2

(yhi−ylow)2 = 1− δ (B.380)

208

Assume |bk − µ| < t and introduce a scalar: 0 < d < 1. Remember, we require

b2
k < µ2 + σ2. And we know µ− t < bk < µ+ t which implies

b2
k < µ2 + t2 + 2|µ|t︸ ︷︷ ︸

=dσ2

< µ2 + σ2 (B.381)

⇒ 0 = t2 + 2|µ|t− dσ2, t > 0 (B.382)

This expression has two roots for t, one positive and one negative. |bk − µ| can only

be upper bounded by a positive number, so we select the positive root.

troots =
−2|µ| ±

√
4µ2 + d4σ2

2
(B.383)

= −|µ| ±
√
µ2 + dσ2 (B.384)

t+ = −|µ|+
√
µ2 + dσ2 (B.385)

Plugging t+ back into equation (B.381) for t, we find that

G = µ2 + σ2 − b2
k > (1− d)σ2. (B.386)

Rearranging (B.380) and plugging in t, we can derive the number of iterations

required:

k >
(yhi − ylow
−|µ|+

√
µ2 + dσ2

)2

log
[√2

δ1/2

]
. (B.387)

If we assume p(y) ∼ N (µ, σ2) and use a Chernoff bound, we find

Pr(|bk − µ| < t) ≥ 1− 2e−
kt2

σ2 = 1− δ (B.388)

k >
(σ

−|µ|+
√
µ2 + dσ2

)2

log
[2
δ

]
. (B.389)

The number of samples needed to maintain stability of the system grows as the true

mean µ deviates from zero. This is not an artifact of the concentration inequalities (it

209

occurs with both), but of the parameterization of the LQ-GAN—the samples are not

mean centered before being passed to the quadratic discriminator, i.e., w2y
2 rather

than w2(y−µ)2. This may explain why batch norm is so helpful (almost required) in

stabilizing training.

Proposition 31. Assume all y ∼ p(y) lie in [ylow, yhi]. After k >
(

yhi−ylow
−|µ|+
√
µ2+dσ2

)2
log[

√
2

δ1/2
]

iterations, with probability, 1 − δ, the (w1, b)-subsystem can be up-weighted and the

(w2, a)-subsystem “turned-on”, resulting in a strictly-monotone LQ-GAN.

Proof. As before, assume we are running Fw1,b
cc on the (w1, b)-subsystem and Fw2,a

cc′ on

the (w2, a)-subsystem. Also, multiply Fw1,b
cc by e > 0, i.e., increase the learning rate

by e or divide the learning rate of Fw2,a
cc′ by e. The full symmetrized Jacobian of this

system is:

Jcc′ =



1 0 0 0

0 e 0 0

0 0 a2−b2+µ2+σ2

2a2
b

2a

0 0 b
2a

e


=



1 0 0 0

0 e 0 0

0 0 G
2a2

+ 1
2

b
2a

0 0 b
2a

e


(B.390)

The upper left 2× 2 block of this matrix is positive definite. In order to show the

whole matrix is positive definite, it suffices to prove the lower right block is positive

definite. The trace and determinant of that block are

Trab = 1/2 + e+
G

2a2
(B.391)

Detab =
2e(a2 +G)− b2

4a2
. (B.392)

where G = µ2 + σ2 − b2 as before. We need G ≥ 0 for Trab > 0 (for lima→0+) and

2eG ≥ b2 for Det > 0. As before, Hoeffding’s inequality says k iterations are required

210

for an accurate estimate of the mean (see Equation (B.387)). And as before, we find

that G = (1− d)σ2. We will focus on the determinant condition here. Let

G = (1− d)σ2 ≥ b2

2e
(B.393)

⇒ e ≥ b2

2(1− d)σ2
(B.394)

⇒ e ≥ µ2 + dσ2

2(1− d)σ2
(B.395)

or ⇒ d ≤ 1− b2

2eσ2
(B.396)

⇒ d ≤ 1− µ2 + dσ2

2eσ2
. (B.397)

More simply, let d = 1/2. Then set e > µ2max

σ2
min

+ 1
2
. This ensures the trace and

determinant are both strictly positive which implies that the resulting system is at

least strictly monotone.

We can show that this system is not strongly-monotone by upper bounding the

minimum eigenvalue. To ease the analysis, let H = 2eG − b2 and note that H <

2eσ2 (see Equation (B.393)), i.e., H is finite. This allows us to upper bound the

determinant, in turn, upper bounding the minimum eigenvalue. The determinant

simplifies to

Detab =
e

2
+

H

4a2
. (B.398)

The minimum eigenvalue is upper bounded as follows:

λmin =
1

2

(
Tr −

√
Tr2 − 4Det

)
(B.399)

=
1

2

(
1/2 + e+

G

2a2
−
√

(1/2 + e+
G

2a2
)2 − 2e− H

a2

)
(B.400)

lim
a→0+

λmin =
1

2

(
1/2 + e+

G

2a2
−
√

(1/2 + e+
G

2a2
)2
)

= 0 (B.401)

211

As the system continues learning a more accurate mean (iterations, k, is increas-

ing), d is effectively decreasing towards zero. In the limit limd→0+ e ≥ µ2

2σ2 .

Given, [ylow, yhi], we can set µmax = max(|ylow|, |yhi|). Also, note that if the

distribution is known to support ε balls at the ends of the specified interval, [ylow, yhi],

with some nonzero probabilities, Plow and Phi, then we can lower bound the variance

as well. Specifically, let Plow = ε
2

(
p(ylow)+p(ylow+ε)

)
and Phi = ε

2

(
p(yhi)+p(yhi−ε)

)
.

Then

σ2 = E[(y − µ)2] =

∫ yhi

ylow

p(y)(y − µ)2dy (B.402)

≥
∫ ylow+ε

ylow

p(y)(y − µ)2dy +

∫ yhi

yhi+ε

p(y)(y − µ)2dy (B.403)

=
ε

2

(
p(ylow) + p(ylow + ε)

)
(ylow − µ)2 (B.404)

+
ε

2

(
p(yhi) + p(yhi − ε)

)
(yhi − µ)2 +O(ε2) (B.405)

≈ Plow(ylow − µ)2 + Phi(yhi − µ)2 (B.406)

≥ PlowPhi(yhi − ylow)2 = σ2
min. (B.407)

B.14 Analysis of the (W2, A)-Subsystem for the N-d LQ-GAN

Let A be a lower triangular matrix with positive diagonal—A represents the gen-

erator’s guess at the square root of Σ.

Proposition 32. The 2-D LQ-GAN is not quasimonotone for Fcc or Feg with or

without scaling.

Proof. We will show that this system fails condition (A). Please refer to the Mathe-

matica notebook for our derivations of these results.

212

Define the following skew symmetric matrix.

K =



0 1 0 0 0 0

−1 0 0 0 0 0

0 0 0 1 0 0

0 0 −1 0 0 0

0 0 0 0 0 1

0 0 0 0 −1 0


(B.408)

Let vcc = KFcc and veg = KFeg. Similarly, with scaling, let vcc′ = KFcc′ and

veg′ = KFeg′ . Let

Σ =

1 1

1 100

 (B.409)

x =



W11

W12

W22

A11

A22

A21


=



0

0

0

1

0.1

0.1


(B.410)

Then

213

v>ccJcc(x)v>cc

∣∣∣
x

= −189684 < 0 (B.411)

v>egJeg(x)v>eg

∣∣∣
x

= −189684 < 0 (B.412)

v>cc′Jcc′(x)v>cc′
∣∣∣
x

= −2.95426 · 109 < 0 (B.413)

v>eg′Jeg′(x)v>eg′
∣∣∣
x

= −2.95426 · 109 < 0 (B.414)

This implies that neither system is quasimonotone (with, cc′/eg′, or without,

cc/eg, scaling).

Proposition 33. The 2-D LQ-GAN with W11 and A11 already learned, i.e., W11 = 0

and A11 = A∗11, is not quasimonotone for Fcc or Feg.

Proof. We will show that this system fails condition (A). Please refer to the Mathe-

matica notebook for our derivations of these results.

Define the following skew symmetric matrix.

K =



0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0


(B.415)

Let vcc = KFcc and veg = KFeg. Let

Σ =

1 1

1 100

 (B.416)

214

x =



W12

W22

A22

A21


=



0

0

0.1

0.1


(B.417)

Then

v>ccJcc(x)v>cc

∣∣∣
x

= −189684 < 0 (B.418)

v>egJeg(x)v>eg

∣∣∣
x

= −189684 < 0 (B.419)

This implies that neither system is quasimonotone.

Proposition 34. The 3-D LQ-GAN with the diagonal of A already learned, i.e.,

Aii = A∗ii, is not quasimonotone for Fcc or Feg with or without scaling.

Proof. We will show that this system fails condition (A). Please refer to the Mathe-

matica notebook for our derivations of these results.

Define the following skew symmetric matrix.

K =



0 1 0 0 0 0

−1 0 0 0 0 0

0 0 0 1 0 0

0 0 −1 0 0 0

0 0 0 0 0 1

0 0 0 0 −1 0


(B.420)

Let vcc = KFcc and veg = KFeg. Let

215

Σ =


0.2 0.15 0.5

0.15 0.9 0.8

0.5 0.8 2

 (B.421)

x =



W12

W13

W23

A21

A31

A32


=



10

10

10

0.1

0.2

−0.5


(B.422)

Then

v>ccJcc(x)v>cc

∣∣∣
x

= −1024.26 < 0 (B.423)

v>egJeg(x)v>eg

∣∣∣
x

= −242766 < 0 (B.424)

This implies that neither system is quasimonotone.

Proposition 35. The N-d LQ-GAN with all but a single row of A fixed is strictly-

monotone for Fcc, Feg, and Fcon.

Proof. First, note that the Cholesky decomposition of Σ, denoted by A∗, obeys the

follow equation:

0 = Σij −
i∑

d=1

A∗idA
∗
jd (B.425)

216

where i < j. Σ is symmetric, so Σji can be recovered as Σij. This allows us to remove

1 degree of freedom from the system by defining the diagonal term in a single row of

A in terms of the other entries in the row:

Aii =

√√√√Σii −
i−1∑
d=1

A2
id (B.426)

where as before Aii must be greater than zero. We assume that Σii has already been

learned by Crossing-the-Curl as described in the main body. The condition Aii > 0

can be ensured by constraining
∑i−1

d=1 A
2
id ≤ Σii− ε with ε� 1—this can be achieved

with a simple ball projection.

Consider learning a single row of A, specifically ANi with i < N ; ANN is recovered

as discussed above and AN,i>N = 0 by definition of the Cholesky decomposition. We

will also set all W2ij = W2ji equal to zero except where i xor j equals N . This has

the effect of fixing parts of the system irrelevant for solving the Nth row of A. For

ease of exposition, we will drop the “2” subscript of W2 in what follows.

We will begin by writing down the map for the entire system and then simplifying

using the constraints and assumptions discussed above:

217

FW2 = AA> − Σ (B.427)

=



A2
11 A11A21 A11A31 · · ·

A11A21 A2
21 + A2

22 A21A31 + A22A32 · · ·

A11A31 A21A31 + A22A32 A2
31 + A2

32 + A2
33 · · ·

...
...

...
. . .


−



S11 S12 S13 · · ·

S12 S22 S23 · · ·

S13 S23 S33 · · ·
...

...
...

. . .


(B.428)

FA = −2W2A (B.429)

= −2



A11W11 + A21W12 + A31W13 + · · · A22W12 + A32W13 + · · · A33W13 + · · · · · ·

A11W12 + A21W22 + A31W23 + · · · A22W22 + A32W23 + · · · A33W23 + · · · · · ·

A11W13 + A21W23 + A31W33 + · · · A22W23 + A32W33 + · · · A33W33 + · · · · · ·
...

...
...

. . .


.

(B.430)

We are only interested in learning the Nth row of A. Take N = 3 for example.

Notice that the 3rd row of A, A3:, only contains the following W2 terms: W13,W23.

The rest are set to zero as mentioned earlier. The reason for this will become apparent

soon. We fix all other entries to zero to highlight the relevant subsystem below:

218

FW2 = AA> − Σ (B.431)

=



0 0 A11A31 − S13 · · ·

0 0 A21A31 + A22A32 − S23 · · ·

A11A31 − S13 A21A31 + A22A32 − S23 0 · · ·
...

...
...

. . .


(B.432)

FWi<N
= 2
(∑
d≤i

AidANd − SiN
)

(B.433)

FA = −2W2A (B.434)

= −2



0 0 0 · · ·

0 0 0 · · ·

A11W13 + A21W23 A22W23 0 · · ·
...

...
...

. . .


(B.435)

FAN>i = −2
(∑
d<N

AdiWdN

)
. (B.436)

Notice that the map FW2 is zero only if Equation (B.425) is satisfied for ΣiN and

WdN = 0 for all d < N . Therefore, setting all other entries of W2 as prescribed

simplified the system, while maintaining the correct fixed point.

In order to determine the monotonicity of this system, we need to compute the

Jacobian of F = [FW2 ;FA]:

219

J =

∂FWi<d∂Wk<d

∂FWi<d
∂Ad>k

∂FAd>i
∂Wk<d

∂FAd>i
∂Ad>k

 (B.437)

= −2

(d− 1)× 0 −Ai≥k

Ak≥i (d− 1)× 0

 (B.438)

= −2



0 0 −A11 0

0 0 −A21 −A22

A11 A21 0 0

0 A22 0 0


for N = 3 (B.439)

= −2

 0 −A:d−1

A>:d−1 0

 (B.440)

which is skew-symmetric and constant with respect to the variables being learned:

W2,i<N and AN>i. Therefore, J + J> = 0 is PSD, which implies F is monotone. The

fact that J is constant along with Proposition 11 imply that Fcc = Feg = Fcon = −JF

are also monotone:

Fcc = Feg = Fcon = 2

−A:d−1FAd>i

A>:d−1FWi<d

 . (B.441)

Note that the component of Fcc corresponding to the dynamics of A, is indepen-

dent of W2. This means the dynamics are now decoupled from W2 and can be run

separately. By inspecting the symmetrized Jacobian of Fcc we can show that it is a

block matrix composed of positive definite matrices:

220

Jsym =
1

4
(J − J>)>(J − J>) (B.442)

= J>J = −JJ (B.443)

=

A:d−1A
>
:d−1 0

0 A>:d−1A:d−1

 . (B.444)

A:d−1A
>
:d−1 is positive definite because A is constrained to be of Cholesky form.

Moreover, the eigenvalues of A>:d−1A:d−1 are the same as A:d−1A
>
:d−1, therefore both

blocks are positive definite. This implies the entire matrix Jsym is positive definite

which means Fcc = Feg = Fcon are strictly monotone. Note that we do not require

A:d−1 = A∗:d−1 for strict monotonicity. In practice, the system will actually be both

strongly-monotone and smooth. This is because A is constrained with a projection

onto a ball and the diagonal of A is restricted to be larger than ε. These two con-

ditions guarantee a nonzero, finite minimum and maximum value for the eigenvalues

of A:d−1A
>
:d−1—the minimum corresponds to strong-monotonicity and the maximum

corresponds to smoothness.

Unlike the (w2, a)-subsystem where monotonicity depends on the accuracy of the

learned mean, this system is monotone as long as A:d−1 is PSD which is guaranteed

from the form we have prescribed to A. This result suggests learning the rows of A in

succession, and each subsystem is guaranteed to be strictly monotone. Note that the

variance, i.e., diagonal of Σ, will be slightly off the true value if the mean, µ, is not

first learned perfectly. The learned A will then be slightly off the true A∗ and errors

will compound, but still not affect monotonicity. The subsystems corresponding to

each row of A can be revisited to learn the entries of A more accurately. Permuting

the dimensions of x such that the dimensions corresponding to highest variance are

learned first may ensure subsystems with maximal strong-monotonicity. We leave a

detailed examination to future research.

221

B.15 An O(N/k) Algorithm for LQ-GAN

Here we present pseudocode for solving the stochastic LQ-GAN. The maps corre-

sponding to learning the mean and variance by Crossing-the-Curl are both strongly

convex and can therefore be solved with a simple projected gradient method. We

argued in the previous section that the map associated with learning the covariance

terms is strongly-monotone and smooth, not only strictly monotone. In practice, we

found that a projected Extragradient algorithm [55] gave better results. The full

procedure is outlined in Algorithm 5. Replace sample estimates with the true µ and

Σ for the deterministic LQ-GAN.

222

Algorithm 8 Crossing-the-Curl for LQ-GAN

Input: Sampling distribution p(y), max iterations K, batch size B, lower bound on
variance σmin

(1) Learn Mean
µ0 = [0, . . . , 0]>

for all k = 1, 2, . . . , K do
µ̂ = 1

B

∑B
s=1(ys ∼ p(y))

µk = k
k+1

µk−1 + 1
k+1

µ̂, i.e., µk = µk−1 − ρkF b
cc with step size ρk = 1

k+1

end for
(2) Learn Variance
σ0 = [1, . . . , 1]>

for all k = 1, 2, . . . , K do
σ̂2 = 1

B

∑B
s=1[(ys ∼ p(y))− µK]2

F a
cc′ = (σ2

k − σ̂2)/(2σk)
σk = clip(σk−1 − 1

k+1
F a
cc′ , σmin,∞)

end for
(3) Learn Covariance
A0 = LT (IN), i.e., lower triangular part of identity matrix
A0,11 = σK,1
for all d = 2, . . . , N do

for all k = 1, 2, . . . , K do
ys ∼ p(y), s = 1, . . . , B
Σ̂ = 1

B

∑B
s=1(ys − µK)>(ys − µK)

FWi<d
= 2
(∑

j≤iAk−1,ijAk−1,dj − Σ̂id

)
FA
cc = A>k−1,:d−1FWi<d

where Ak−1,:d−1 refers to the top left d− 1× d− 1 block
of Ak−1

Âk,d: = Ak−1,d: − 1
k+1

FA
cc where Ak−1,d: refers to the dth row of Ak excluding

the diagonal
if
∑

j Â
2
k,dj > σ2

K,d − σ2
min then

Âk,dj = Âk,dj · σK,d/
√∑

j Â
2
k,dj + σ2

min

end if
FWi<d

= 2
(∑

j≤iAk−1,ijÂk,dj − Σ̂id

)
FA
cc = A>k−1,:d−1FWi<d

where Ak−1,:d−1 refers to the top left d− 1× d− 1 block
of Ak−1

Ak,d: = Ak−1,d: − 1
k+1

FA
cc where Ak−1,d: refers to the dth row of Ak excluding

the diagonal
if
∑

j A
2
k,dj > σ2

K,d − σ2
min then

Ak,dj = Ak,dj · σK,d/
√∑

j A
2
k,dj + σ2

min

end if
end for
AK,dd =

√
σ2
K,d −

∑
j A

2
K,dj

end for

223

B.15.1 Convergence Rate

As mentioned above, the maps for learning the mean and variance are both

strongly convex which implies a O(1/k) stochastic convergence rate for each, the

sum of which is still O(1/k).

In practice, the maps for learning each row of A are strongly-monotone and smooth

(see last paragraph of proof of Proposition B.14) which implies a O(1/k) stochastic

convergence rate for each as well. Because this technique consists of N + 1 steps for

learning the full N -d LQ-GAN, it requires k̂ = Nk iterations which, in total, implies

a O(N/k) stochastic convergence rate.

Hidden within this analysis is the fact that each iteration of learning the mean

and variance is O(N) in terms of time-complexity and each iteration for learning each

row of A is O(N2), therefore this entire procedure is O(N3/k) in terms of FLOPS.

This is expected as the complexity of a Cholesky decomposition to compute A = Σ1/2

is also O(N3). Note that unlike the complexity of computing F each iteration which

can be mitigated with parallel computation, the sequential nature of the stagewise

procedure cannot be amortized which is why we report a O(N/k) convergence rate

and not O(1/k).

Another subtle point is that the LQ-GAN is locally monotone about the equilib-

rium. Recall from Theorem D.1 on p.26 in the work of Nagarajan and Kolter [2017]

that the Jacobian at the equilibrium is of the following form (remember our definition

for the Jacobian is the negative of theirs):

J =

 JDD JDG

−J>DG 0

 (B.445)

where JDD is positive definite. The symmetrized Jacobian is then

224

Jsym =
1

2
(J + J>) =

JDD 0

0 0

 � 0. (B.446)

This implies F is monotone where F = [∇VA,b;−∇VW2,w1]. Therefore, we can use

stagewise procedure in Algorithm 5 to converge to a local neighborhood about the

equilibrium, constrain the system to this neighborhood with a projection (which will

guarantee smoothness of the map), and then continue with an Extragradient method

applied to the full system. The local convergence rate will still be O(1/k) with O(N3)

iteration complexity due to the matrix multiplications required in computing F (see

Proposition 9).

B.16 Deep Learning Specifications and Results

We also experimented on common neural-net driven tasks. We tested Flin with

(α, β, γ) = (1, 10, 10−4) on a mixture of Gaussians and (α, β, γ) = (1, 10, 0.1) on

CIFAR10 against Fcon, i.e., (α, β, γ) = (1, 10, 0). Introducing a small −JF term can

help accelerate training (see Figure B.1).

Figure B.1: Fcon (top) vs Flin (bottom) on a mixture of Gaussians (left) and CIFAR10
(right). Each column of images corresponds to an epoch with epochs increasing left
to right.

B.16.1 Images at End of Training for Mixture of Gaussians

See Figure B.2.

225

-0.032

-0.032

-0
.0

28

-0.028

-0.024

-0.024

-0
.0

24

-0.020

-0
.0

20

-0
.0

20

-0
.0

20

-0.020

-0.016

-0.016

-0
.0

16

-0.036

-0.032

-0.032-0.028

-0.028

-0.028

-0.024

-0.024

-0
.0

24

-0.020

-0.020

-0.020 -0.016
-0.016

-0.016 -0.016

-0.016

-0.012

Figure B.2: Fcon (top row) vs Flin (bottom row) on a mixture of Gaussians. Contour
plots of discriminator along with samples in red shown for Fcon (left) and Flin (right).

B.16.2 Mixture of Gaussians Network Architectures

Both the generator and discriminator are fully connected neural networks. The

relevant hyperparameters for setting up the GAN are itemized below.

• batch size 512

• divergence Wasserstein

• disc optim Adam

• disc learning rate 0.001

• disc n hidden 16

• disc n layer 4

• disc nonlinearity ReLU

• gen optim Adam

• gen learning rate 0.001

• gen n hidden 16

• gen n layer 4

• gen nonlinearity ReLU

226

• betas [0.5, 0.999]

• epsilon 1e-08

• max iter 5001

• z dim 16

• x dim 2

Fcon was used with β = 1.0 and Flin was used with (α, β, γ) = (1.0, 1.0, 0.001).

B.16.3 Images at End of Training for CIFAR10

See Figure B.3.

Figure B.3: Fcon (top row) vs Flin (bottom row) on CIFAR10. Images generated at
final iteration shown for Fcon (left) and Flin (right).

B.16.4 CIFAR10 Network Architectures

Both the generator and discriminator are convolutional neural networks; we copied

the architectures used in [74]. The generator consists of a linear layer, followed by

4 deconvolution layers (5 × 5 kernel, 2 × 2 stride, leaky ReLU, 64 hidden channels),

followed by a final linear layer with a tanh nonlinearity. The discriminator consists

of 4 convolution layers (5 × 5 kernel, 2 × 2 stride, leaky ReLU, 64 hidden channels)

followed by a linear layer. The relevant hyperparameters for setting up the GAN are

itemized below.

227

• batch size 64

• divergence JS

• disc optim RMSprop

• disc learning rate 0.0001

• gen optim RMSprop

• gen learning rate 0.0001

• betas [0.5, 0.999]

• epsilon 1e-08

• max iter 150001

• z dim 256

• x dim 1024

Fcon was used with β = 10.0 and Flin was used with (α, β, γ) = (1.0, 10.0, 0.0001).

228

APPENDIX C

GENERATIVE MULTI-ADVERSARIAL NETWORKS

This appendix supplements Chapter 4 with additional experiments and descrip-

tions of their architectures.

C.0.1 Accelerated Convergence and Reduced Variance

See Figures C.1, C.2, C.3, and C.4.

Figure C.1: Generator objective, F ,
averaged over 5 training runs on
CelebA. Increasing N (# of D) accel-
erates convergence of F to steady state
(solid line) and reduces its variance, σ2

(filled shadow ±1σ). Figure C.2 pro-
vides alternative evidence of GMAN-
0’s accelerated convergence.

Figure C.2: Stdev, σ, of the genera-
tor objective over a sliding window of
500 iterations. Lower values indicate
a more steady-state. GMAN-0 with
N = 5 achieves steady-state at ≈2x
speed of GAN (N = 1). Note Fig-
ure C.1’s filled shadows reveal stdev
of F over runs, while this plot shows
stdev over time.

229

Figure C.3: Generator objective, F ,
averaged over 5 training runs on
CIFAR-10. Increasing N (# of D) ac-
celerates convergence of F to steady
state (solid line) and reduces its vari-
ance, σ2 (filled shadow ±1σ). Fig-
ure C.4 provides alternative evidence
of GMAN-0’s accelerated convergence.

Figure C.4: Stdev, σ, of the genera-
tor objective over a sliding window of
500 iterations. Lower values indicate
a more steady-state. GMAN-0 with
N = 5 achieves steady-state at ≈2x
speed of GAN (N = 1). Note Fig-
ure C.3’s filled shadows reveal stdev
of F over runs, while this plot shows
stdev over time.

C.0.2 Additional GMAM Tables

See Tables C.1, C.2, C.3, C.4, C.5. Increasing the number of discriminators from 2

to 5 on CIFAR-10 significantly improves scores over the standard GAN both in terms

of the GMAM metric and Inception scores.

Score Variant GMAN∗ GMAN-1 GAN GMAN-0 GMAN-max mod-GAN

B
et

te
r→

0.184 GMAN∗ - −0.007 −0.040 −0.020 −0.028 −0.089
0.067 GMAN-1 0.007 - −0.008 −0.008 −0.021 −0.037
0.030 GAN 0.040 0.008 - 0.002 −0.018 −0.058
0.005 GMAN-0 0.020 0.008 0.002 - −0.013 −0.018
−0.091 GMAN-max 0.028 0.021 0.018 0.013 - −0.011
−0.213 mod-GAN 0.089 0.037 0.058 0.018 0.011 -

Table C.1: Pairwise GMAM metric means for select models on MNIST. For each
column, a positive GMAM indicates better performance relative to the row opponent;
negative implies worse. Scores are obtained by summing each column.

230

Score Variant GMAN-0 GMAN-1 GMAN∗ mod-GAN

B
et

te
r→

0.172 GMAN-0 - −0.022 −0.062 −0.088
0.050 GMAN-1 0.022 - 0.006 −0.078
−0.055 GMAN∗ 0.062 −0.006 - −0.001
−0.167 mod-GAN 0.088 0.078 0.001 -

Table C.2: Pairwise GMAM metric means for select models on CIFAR-10. For each
column, a positive GMAM indicates better performance relative to the row oppo-
nent; negative implies worse. Scores are obtained by summing each column. GMAN
variants were trained with two discriminators.

GMAN-0 GMAN-1 mod-GAN GMAN∗

Score 5.878± 0.193 5.765± 0.168 5.738± 0.176 5.539± 0.099

Table C.3: Inception score means with standard deviations for select models on
CIFAR-10. Higher scores are better. GMAN variants were trained with two dis-
criminators.

Score Variant GMAN-0 GMAN∗ GMAN-1 mod-GAN

B
et

te
r→

0.180 GMAN-0 - −0.008 −0.041 −0.132
0.122 GMAN∗ 0.008 - −0.038 −0.092
0.010 GMAN-1 0.041 0.038 - −0.089
−0.313 mod-GAN 0.132 0.092 0.089 -

Table C.4: Pairwise GMAM metric means for select models on CIFAR-10. For each
column, a positive GMAM indicates better performance relative to the row oppo-
nent; negative implies worse. Scores are obtained by summing each column. GMAN
variants were trained with five discriminators.

GMAN-1 GMAN-0 GMAN∗ mod-GAN
Score 6.001± 0.194 5.957± 0.135 5.955± 0.153 5.738± 0.176

Table C.5: Inception score means with standard deviations for select models on
CIFAR-10. Higher scores are better. GMAN variants were trained with five dis-
criminators.

231

C.0.3 Generated Images

See Figures C.5 and C.6.

Figure C.5: Sample of images generated on CelebA cropped dataset.

C.1 Related Work

A GAN framework with two discriminators appeared in the work of Yoo et al. [2016],

however, it is applicable only in a semi-supervised case where a label can be assigned

to subsets of the dataset (e.g., X = {X1 = Domain 1,X2 = Domain 2, . . .}). In con-

trast, our framework applies to an unsupervised scenario where an obvious partition

of the dataset is unknown. Furthermore, extending GMAN to the semi-supervised

domain-adaptation scenario would suggest multiple discriminators per domain, there-

fore our line of research is strictly orthogonal to that of their multi-domain discrimi-

nator approach. Also, note that assigning a discriminator to each domain is akin to

prescribing a new discriminator to each value of a conditional variable in conditional

GANs [77]. In this case, we interpret GMAN as introducing multiple conditional

discriminators and not a discriminator for each of the possibly exponentially many

conditional labels.

In Section 4.4.3, we describe an approach to customize adversarial training to

better suit the development of the generator. An approach with similar conceptual

232

Figure C.6: Sample of images generated by GMAN-0 on CIFAR dataset.

233

underpinnings was described in the work of Ravanbakhsh et al. [2016], however, sim-

ilar to the above, it is only admissible in a semi-supervised scenario whereas our

applies to the unsupervised case.

C.2 Softmax Representability

Let softmax (Vi) = V̂ ∈ [minVi ,maxVi]. Also let a = arg mini Vi, b = arg maxi Vi,

and V(t) = V ((1 − t)Da + tDb) so that V(0) = Va and V(1) = Vb. The softmax

and minimax objective V (Di, G) are both continuous in their inputs, so by the in-

termediate value theorem, we have that ∃ t̂ ∈ [0, 1] s.t. V(t̂) = V̂ , which implies

∃ D̂ ∈ D s.t. V (D̂, G) = V̂ . This result implies that the softmax (and any other

continuous substitute) can be interpreted as returning V (D̂, G) for some D̂ selected

by computing an another, unknown function over the space of the discriminators.

Note that this result holds even if D̂ is not representable by the architecture chosen

for the dicriminator’s neural network.

C.3 Unconstrained Optimization

To convert GMAN∗ minimax formulation to an unconstrained minimax formula-

tion, we introduce an auxiliary variable, Λ, define λ(Λ) = log(1 + eΛ), and let the

generator minimize over Λ ∈ R instead.

C.4 Boosting with AdaBoost.OL

Note that the online AdaBoost algorithm [14] does not require knowledge of the

weak learner’s slight edge over random guessing (P (correct prediction) = 0.5 + γ ∈

(0, 0.5]), and in fact, allows γ < 0. This is theoretically crucial because our weak

learners are deep nets with unknown, possibly negative, γ’s.

234

Figure C.7: Example of images generated across four independent runs on MNIST
with boosting.

C.5 Experimental Setup

All the experiments were conducted using architecture similar to DCGAN [92]. We

use convolutional transpose layers [121] for the generator G and strided convolutions

for the discriminator D except for the input of the generator and the last layer of the

discriminator.

We use the single step gradient method as in the work of Nowozin et al. [2016].

Batch normalization [48] was used in each of the generator layers. The different

discriminators were trained with varying dropout rates from [0.3, 0.7].

Variations in the discriminators were effected in two ways. We varied the architec-

ture by varying the number of filters in the discriminator layers (reduced by factors

of 2, 4 and so on), as well as varying dropout rates. Secondly we also decorrelated

the samples that the disriminators were training on by splitting the minibatch across

the discriminators.

Specifics for the MNIST architecture and training are:

• Generator latent variables z ∼ U (−1, 1)100

• Generator convolution transpose layers as follows:

(4, 4, 128) , (8, 8, 64) , (16, 16, 32) , (32, 32, 1)

235

• Base Discriminator architecture: (32, 32, 1) , (16, 16, 32) , (8, 8, 64) , (4, 4, 128).

• Variants have either convolution 3 (4, 4, 128) removed or all the filter sizes

are divided by 2 or 4. That is, (32, 32, 1) , (16, 16, 16) , (8, 8, 32) , (4, 4, 64) or

(32, 32, 1) , (16, 16, 8) , (8, 8, 16) , (4, 4, 32).

• ReLu activations for all the hidden units. Tanh activation at the output units

of the generator. Sigmoid at the output of the Discriminator.

• Optimization was done using Adam [59] with a learning rate of 2 × 10−4 and

β1 = 0.5.

• MNIST was trained for 20 epochs with a minibatch of size 100.

• CelebA and CIFAR were trained over 24000 iterations with a minibatch of size

100 each iteration.

The code was written in Tensorflow [1] and run on Nvidia GTX 980 GPUs.

236

APPENDIX D

ANALYZING NON-MONOTONE GAMES

This appendix supplements Chapter 5.

D.1 BoA Algorithm Pseudocode

We present the boundary of attraction algorithm from the work of Armiyoon and

Wu [2014] for convenience.

Algorithm 9 Boundaries of Attraction (BoA) Algorithm

INPUT: VI(F,X).

1: Initialize grid X over state space X
2: Initialize P (x), x ∈ X to uniform distribution
3: Initialize hash D
4: repeat
5: Sample x0 from P (x)
6: Compute Lyapunov exponent (LE) for x0

7: Compute LEs for neighbors of x0

8: if ∃i, j s.t. LE(xi) 6= LE(xj) then
9: Save (xi, xj) to D[LE(xi)]

10: Save (xj, xi) to D[LE(xj)]
11: end if
12: Update P (x) according to heuristic
13: until Frequency of boundary detection < threshold

D.2 Polynomial Coefficients for Demand Function Qij

We list the coefficients for β defined for the demand function Qij below in Ta-

ble D.1.

237

β0 β1 β2 β3 β4 β5

8 -20 26 -19 7 -1

Table D.1: The polynomial function coefficients, β, for tc = 1. Viable coefficients
can be derived for any tc ∈ [1, 3.8] (see supplementary Mathematica file for deriva-
tion). Outside of that range, the demand function begins to lose properties such as
monotonicity and/or the existence of the elastic/inelastic region.

D.3 Individual Cloud Profit Functions Non-Concave

The individual cloud profit functions may be non-concave. Consider H11 =

10, H12 = 1, α11 = 1, α12 = 1/10, c1 = 1, d1 = 1, dr = 1,
∑

i′ 6=i pi′ = 2. Then

π1(p1, d1) = (10e
−(

p21
p1+2

)2
+ e

−(1
10

p21
p1+2

)2
)(p1 − 1). (D.1)

Figure D.1 shows the function.

Figure D.1: Individual profit functions may be non-concave.

D.4 Model Parameters for Scenario 1

Below, we have listed the parameters that define the market for Scenario 1.

c1 c2 c3 c4

1.05 1.10 0.95 1.15

Table D.2: Cloud cost function coefficients.

238

αij Cloud 1 Cloud 2 Cloud 3 Cloud 4
Client 1 0.27 0.27 0.27 0.38
Client 2 0.34 0.34 0.34 0.31
Client 3 0.33 0.33 0.33 0.26
Client 4 0.25 0.40 0.40 0.34

Table D.3: Client preferences.

Hij Cloud 1 Cloud 2 Cloud 3 Cloud 4
Client 1 11 11 11 11
Client 2 9 9 9 9
Client 3 6 6 6 6
Client 4 12 12 12 12

Table D.4: Client scale factors.

D.5 Model Parameters for Scenario 2

In scenario 2, the first client refocuses their loyalty towards the newly introduced

green tech cloud, cloud 5. All other parameters remain the same.

αij Cloud 1 Cloud 2 Cloud 3 Cloud 4
Client 1 0.38 0.38 0.38 0.27
Client 2 0.34 0.34 0.34 0.31
Client 3 0.33 0.33 0.33 0.26
Client 4 0.25 0.40 0.40 0.34

Table D.5: Business preferences.

D.6 Model Parameters for BoA Demonstration

These are the parameters that define the market for the BoA demonstration.

Everything remains the same from scenario 1; the only changes come with the addition

of cloud 5.

239

c1 c2 c3 c4 c5
1.05 1.10 0.95 1.15 1.20

Table D.6: Cloud cost function coefficients.

αij Cloud 1 Cloud 2 Cloud 3 Cloud 4 Cloud 5
Client 1 0.27 0.27 0.27 0.38 0.38
Client 2 0.34 0.34 0.34 0.31 0.31
Client 3 0.33 0.33 0.33 0.26 0.26
Client 4 0.25 0.40 0.40 0.34 0.34

Table D.7: Client preferences.

Hij Cloud 1 Cloud 2 Cloud 3 Cloud 4 Cloud 5
Client 1 11 11 11 11 11
Client 2 9 9 9 9 9
Client 3 6 6 6 6 6
Client 4 12 12 12 12 12

Table D.8: Client scale factors.

240

BIBLIOGRAPHY

[1] Martın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
Tensorflow: Large-scale machine learning on heterogeneous distributed systems.
arXiv preprint arXiv:1603.04467, 2016.

[2] Michele Aghassi, Dimitris Bertsimas, and Georgia Perakis. Solving asymmetric
variational inequalities via convex optimization. Operations Research Letters,
34(5):481–490, 2006.

[3] A. A. Ahmadi, A. Olshevsky, P. A. Parrilo, and J. N. Tsitsiklis. Np-hardness of
deciding convexity of quartic polynomials and related problems. Mathematical
Programming, 2013.

[4] Felipe Alvarez. On the minimizing property of a second order dissipative system
in hilbert spaces. SIAM Journal on Control and Optimization, 38(4):1102–1119,
2000.

[5] S. I. Amari. Natural gradient works efficiently in learning. Neural Computation,
1998.

[6] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv
preprint arXiv:1701.07875, 2017.

[7] Ali Reza Armiyoon and Christine Qiong Wu. An innovative approach for iden-
tifying boundaries of a basin of attraction for a dynamical system using Monte
Carlo techniques and Lyapunov exponents. In 53rd IEEE Conference on Deci-
sion and Control, CDC 2014, Los Angeles, CA, USA, December 15-17, 2014,
pages 6299–6304. IEEE, 2014. ISBN 978-1-4799-7746-8. doi: 10.1109/CDC.
2014.7040376. URL http://dx.doi.org/10.1109/CDC.2014.7040376.

[8] S. Arora, R. Ge, Y. Liang, T. Ma, and Y. Zhang. Generalization and equilibrium
in generative adversarial nets (gans). arXiv preprint arXiv:1703.00573, 2017.

[9] Muhammad Aslam Noor. Generalized set-valued variational inequalities. Le
Matematiche, 52(1):3–24, 1998.

[10] Kamyar Azizzadenesheli, Brandon Yang, Weitang Liu, Emma Brunskill,
Zachary C Lipton, and Animashree Anandkumar. Sample-efficient deep rl with
generative adversarial tree search. arXiv preprint arXiv:1806.05780, 2018.

241

http://dx.doi.org/10.1109/CDC.2014.7040376

[11] David Balduzzi, Sebastien Racaniere, James Martens, Jakob Foerster, Karl
Tuyls, and Thore Graepel. The mechanics of n-player differentiable games.
arXiv preprint arXiv:1802.05642, 2018.

[12] David Balduzzi, Karl Tuyls, Julien Perolat, and Thore Graepel. Re-evaluating
evaluation. arXiv preprint arXiv:1806.02643, 2018.

[13] T. Basar and G. J. Olsder. Dynamic noncooperative game theory. SIAM, 1999.

[14] Alina Beygelzimer, Satyen Kale, and Haipeng Luo. Optimal and adaptive al-
gorithms for online boosting. arXiv preprint arXiv:1502.02651, 2015.

[15] V. Borkar. Stochastic Approximation: A Dynamical Systems Viewpoint. Cam-
bridge University Press, 2008.

[16] V. S. Borkar and S. P. Meyn. The ode method for convergence of stochas-
tic approximation and reinforcement learning. SIAM Journal on Control and
Optimization, 2000.

[17] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge
university press, 2004.

[18] X. Cai, G. Gu, and B. He. On the o(1/t) convergence rate of the projection
and contraction methods for variational inequalities with lipschitz continuous
monotone operators. Computational Optimization and Applications, 2014.

[19] Ennio Cavazzuti, Massimo Pappalardo, and Mauro Passacantando. Nash equi-
libria, variational inequalities, and dynamical systems. Journal of optimization
theory and applications, 114(3):491–506, 2002.

[20] Pratik Chaudhari and Stefano Soatto. Stochastic gradient descent performs
variational inference, converges to limit cycles for deep networks. In 2018 In-
formation Theory and Applications Workshop (ITA), pages 1–10. IEEE, 2018.

[21] Antoine-Augustin Cournot. Recherches sur les principes mathématiques de la
théorie des richesses par Augustin Cournot. chez L. Hachette, 1838.

[22] J. P. Crouzeix and J. A. Ferland. Criteria for differentiable generalized mono-
tone maps. Mathematical Programming, 1996.

[23] S. Dafermos. Traffic equilibria and variational inequalities. Transportation
Science, 14:42–54, 1980.

[24] Stella Dafermos. An iterative scheme for variational inequalities. Mathematical
Programming, 26(1):40–47, 1983.

[25] C. D. Dang and G. Lan. On the convergence properties of non-euclidean extra-
gradient methods for variational inequalities with generalized monotone opera-
tors. Computational Optimization and Applications, 2015.

242

[26] L. de Oliveira, M. Paganini, and B. Nachman. Learning particle physics by
example: location-aware generative adversarial networks for physics synthesis.
Computing and Software for Big Science, 2017.

[27] SV Denisov, VV Semenov, and LM Chabak. Convergence of the modified
extragradient method for variational inequalities with non-lipschitz operators.
Cybernetics and Systems Analysis, 51(5):757–765, 2015.

[28] Emily Denton, Sam Gross, and Rob Fergus. Semi-supervised learning
with context-conditional generative adversarial networks. arXiv preprint
arXiv:1611.06430, 2016.

[29] René Descartes. La géométrie de René Descartes. A. Hermann, 1886.

[30] H. Drucker and Y. Le Cun. Improving generalization performance using double
backpropagation. IEEE Transactions on Neural Networks, 1992.

[31] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Alex Lamb, Martin Arjovsky,
Olivier Mastropietro, and Aaron Courville. Adversarially learned inference.
arXiv preprint arXiv:1606.00704, 2016.

[32] J. Dutta. When is a gap function good for error bounds? Technical report,
Optimization Online, May 2012.

[33] Eyal Even-Dar, Yishay Mansour, and Uri Nadav. On the convergence of re-
gret minimization dynamics in concave games. In Proceedings of the forty-first
annual ACM symposium on Theory of computing, pages 523–532. ACM, 2009.

[34] F. Facchinei and J. Pang. Finite-Dimensional Variational Inequalities and Com-
plimentarity Problems. Springer, 2003.

[35] Michael Fairbank and Eduardo Alonso. The divergence of reinforcement
learning al-gorithms with value-iteration and function ap-proximation. arXiv
preprint arXiv:1107.4606, 2011.

[36] S. Feizi, C. Suh, F. Xia, and D. Tse. Understanding gans: the lqg setting. arXiv
preprint arXiv:1710.10793, 2017.

[37] Dylan J Foster, Thodoris Lykouris, Karthik Sridharan, Eva Tardos, et al. Learn-
ing in games: Robustness of fast convergence. In Advances in Neural Informa-
tion Processing Systems, pages 4727–4735, 2016.

[38] T. L. Friesz. Dynamic optimization and differential games. Springer Science &
Business Media, 2010.

[39] Gauthier Gidel, Hugo Berard, Pascal Vincent, and Simon Lacoste-Julien. A
variational inequality perspective on generative adversarial nets. arXiv preprint
arXiv:1802.10551, 2018.

243

[40] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative ad-
versarial nets. In Advances in Neural Information Processing Systems, pages
2672–2680, 2014.

[41] Geoffrey J Gordon, Amy Greenwald, and Casey Marks. No-regret learning in
convex games. In Proceedings of the 25th international conference on Machine
learning, pages 360–367. ACM, 2008.

[42] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville. Im-
proved training of wasserstein gans. In Advances in Neural Information Pro-
cessing Systems, 2017.

[43] P. Hartman and G. Stampacchia. On some nonlinear elliptic differential func-
tional equations. Acta Mathematica, 115:271–310, 1966.

[44] D. J. Higham, A. R. Humphries, and R. J. Wain. Phase space error control for
dynamical systems. SIAM Journal on Scientific Computing, 2000.

[45] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning.
arXiv preprint arXiv:1606.03476, 2016.

[46] Xiaolin Hu and Jun Wang. Solving pseudomonotone variational inequalities
and pseudoconvex optimization problems using the projection neural network.
IEEE Transactions on Neural Networks, 17(6):1487–1499, 2006.

[47] Daniel Jiwoong Im, Chris Dongjoo Kim, Hui Jiang, and Roland Memise-
vic. Generating images with recurrent adversarial networks. arXiv preprint
arXiv:1602.05110, 2016.

[48] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

[49] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image
translation with conditional adversarial networks. arXiv preprint, 2017.

[50] A. N. Iusem, A. Jofré, R. I. Oliveira, and P. Thompson. Extragradient method
with variance reduction for stochastic variational inequalities. SIAM Journal
on Optimization, 2017.

[51] Tyler Jarvis and James Tanton. The hairy ball theorem via sperner’s lemma.
The American Mathematical Monthly, 111(7):599–603, 2004.

[52] Ramesh Johari and John N Tsitsiklis. Efficiency loss in a network resource
allocation game. Mathematics of Operations Research, 29(3):407–435, 2004.

[53] A. Juditsky, A. Nemirovski, and C. Tauvel. Solving variational inequalities with
stochastic mirror-prox algorithm. Stochastic Systems, 2011.

244

[54] Artur Kadurin, Alexander Aliper, Andrey Kazennov, Polina Mamoshina,
Quentin Vanhaelen, Kuzma Khrabrov, and Alex Zhavoronkov. The cornucopia
of meaningful leads: Applying deep adversarial autoencoders for new molecule
development in oncology. Oncotarget, 8(7):10883, 2017.

[55] A. Kannan and U. V. Shanbhag. Optimal stochastic extragradient schemes for
pseudomonotone stochastic variational inequality problems and their variants.
arXiv preprint arXiv:1410.1628, 2017.

[56] Aswin Kannan and Uday V Shanbhag. The pseudomonotone stochastic vari-
ational inequality problem: Analytical statements and stochastic extragradi-
ent schemes. In American Control Conference (ACC), 2014, pages 2930–2935.
IEEE, 2014.

[57] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive
growing of gans for improved quality, stability, and variation. arXiv preprint
arXiv:1710.10196, 2017.

[58] H. K. Khalil. Nonlinear Systems. Prentice-Hall, New Jersey, 1996.

[59] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[60] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and
techniques. MIT press, 2009.

[61] G. Korpelevich. The extragradient method for finding saddle points and other
problems. 1977.

[62] GM Korpelevich. The extragradient method for finding saddle points and other
problems. Matecon, 12:747–756, 1976.

[63] Alex Krizhevsky. Learning multiple layers of features from tiny images. Master’s
Thesis, 2009.

[64] Yann LeCun, Corinna Cortes, and Christopher JC Burges. The mnist database
of handwritten digits, 1998.

[65] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunning-
ham, Alejandro Acosta, Andrew P Aitken, Alykhan Tejani, Johannes Totz, Ze-
han Wang, et al. Photo-realistic single image super-resolution using a generative
adversarial network. In CVPR, volume 2, page 4, 2017.

[66] Alexanckr Levin. An analytical method of estimating the domain of attraction
for polynomial differential equations. Automatic Control, IEEE Transactions
on, 39(12):2471–2475, 1994. URL http://ieeexplore.ieee.org/xpls/abs_

all.jsp?arnumber=362845.

245

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=362845
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=362845

[67] Dong Li, Anna Nagurney, and Min Yu. Consumer learning of product quality
with time delay: Insights from spatial price equilibrium models with differenti-
ated products. Omega, 81:150–168, 2018.

[68] Bo Liu, Ji Liu, Mohammad Ghavamzadeh, Sridhar Mahadevan, and Marek
Petrik. Finite-sample analysis of proximal gradient td algorithms. In UAI,
pages 504–513. Citeseer, 2015.

[69] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face
attributes in the wild. In Proceedings of International Conference on Computer
Vision (ICCV), December 2015.

[70] Eliana Lorch. Visualizing deep network training trajectories with pca. In The
33rd International Conference on Machine Learning JMLR volume, volume 48,
2016.

[71] Thodoris Lykouris, Vasilis Syrgkanis, and Éva Tardos. Learning and efficiency in
games with dynamic population. In Proceedings of the Twenty-Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 120–129. Society for
Industrial and Applied Mathematics, 2016.

[72] Liqian Ma, Xu Jia, Qianru Sun, Bernt Schiele, Tinne Tuytelaars, and Luc
Van Gool. Pose guided person image generation. In Advances in Neural Infor-
mation Processing Systems, pages 406–416, 2017.

[73] X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, and S. P. Smolley. Least
squares generative adversarial networks. In IEEE International Conference on
Computer Vision (ICCV), 2017.

[74] Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. The numerics of gans.
arXiv preprint arXiv:1705.10461, 2017.

[75] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training meth-
ods for gans do actually converge? In International Conference on Machine
Learning, pages 3478–3487, 2018.

[76] L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein. Unrolled generative adver-
sarial networks. arXiv preprint arXiv:1611.02163, 2016.

[77] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets.
arXiv preprint arXiv:1411.1784, 2014.

[78] Y. Mroueh and T. Sercu. Fisher gan. In Advances in Neural Information
Processing Systems, 2017.

[79] Y. Mroueh, T. Sercu, and V. Goel. Mcgan: Mean and covariance feature match-
ing gan. arXiv preprint arXiv:1702.08398, 2017.

246

[80] Vaishnavh Nagarajan and J Zico Kolter. Gradient descent gan optimization is
locally stable. In Advances in Neural Information Processing Systems, pages
5591–5600, 2017.

[81] A. Nagurney and D. Zhang. Projected Dynamical Systems and Variational
Inequalities with Applications. Kluwer Academic Press, 1996.

[82] Anna Nagurney and Tilman Wolf. A Cournot–Nash–Bertrand game theory
model of a service-oriented internet with price and quality competition among
network transport providers. Computational Management Science, 11(4):475–
502, 2014.

[83] John Nash. Non-cooperative games. Annals of mathematics, pages 286–295,
1951.

[84] Arkadi Nemirovski. Prox-method with rate of convergence o (1/t) for variational
inequalities with lipschitz continuous monotone operators and smooth convex-
concave saddle point problems. SIAM Journal on Optimization, 15(1):229–251,
2004.

[85] M Aslam Noor. Extragradient methods for pseudomonotone variational in-
equalities. Journal of Optimization Theory and Applications, 117(3):475–488,
2003.

[86] Muhammad Aslam Noor. Modified projection method for pseudomonotone
variational inequalities. Applied Mathematics Letters, 15(3):315–320, 2002.

[87] Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training gener-
ative neural samplers using variational divergence minimization. arXiv preprint
arXiv:1606.00709, 2016.

[88] W. O. Paradis and D. D. Perlmutter. Tracking function approach to practical
stability and ultimate boundedness. AIChE Journal, 12(1):130–136, 1966. ISSN
1547-5905. doi: 10.1002/aic.690120125. URL http://dx.doi.org/10.1002/

aic.690120125.

[89] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and
Alexei A Efros. Context encoders: Feature learning by inpainting. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2536–2544, 2016.

[90] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Research, 12:2825–2830,
2011.

247

http://dx.doi.org/10.1002/aic.690120125
http://dx.doi.org/10.1002/aic.690120125

[91] Mikhail I Rabinovich, Ramón Huerta, Pablo Varona, and Valentin S
Afraimovich. Transient cognitive dynamics, metastability, and decision making.
PLoS computational biology, 4(5):e1000072, 2008.

[92] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015.

[93] Siamak Ravanbakhsh, Francois Lanusse, Rachel Mandelbaum, Jeff Schneider,
and Barnabas Poczos. Enabling dark energy science with deep generative mod-
els of galaxy images. arXiv preprint arXiv:1609.05796, 2016.

[94] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam
and beyond. 2018.

[95] G Romano, L Rosati, F Marotti de Sciarra, and P Bisegna. A potential theory
for monotone multi-valued operators. Quarterly of applied mathematics, 4(4):
613–631, 1993.

[96] Kevin Roth, Aurelien Lucchi, Sebastian Nowozin, and Thomas Hofmann. Sta-
bilizing training of generative adversarial networks through regularization. In
Advances in Neural Information Processing Systems, pages 2018–2028, 2017.

[97] Tim Roughgarden. Intrinsic robustness of the price of anarchy. In Proceedings of
the forty-first annual ACM symposium on Theory of computing, pages 513–522.
ACM, 2009.

[98] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Rad-
ford, and Xi Chen. Improved techniques for training gans. arXiv preprint
arXiv:1606.03498, 2016.

[99] Marco Sandri. Numerical calculation of Lyapunov exponents. Mathematica
Journal, 6(3):78–84, 1996.

[100] S Schaible and Dinh The Luc. Generalized monotone nonsmooth maps. Journal
of Convex Analysis, 3:195–206, 1996.

[101] Thomas Schlegl, Philipp Seeböck, Sebastian M Waldstein, Ursula Schmidt-
Erfurth, and Georg Langs. Unsupervised anomaly detection with generative
adversarial networks to guide marker discovery. In International Conference on
Information Processing in Medical Imaging, pages 146–157. Springer, 2017.

[102] G. Scutari, D. P. Palomar, F. Facchinei, and J. Pang. Convex optimization,
game theory, and variational inequality theory. IEEE Signal Processing Maga-
zine, 2010.

[103] Shai Shalev-Shwartz. Online learning and online convex optimization. Founda-
tions and Trends in Machine Learning, 4(2):107–194, 2011.

248

[104] Steven H Strogatz. Nonlinear dynamics and chaos: with applications to physics,
biology, chemistry, and engineering. Westview press, 2014.

[105] Steven H Strogatz. Nonlinear dynamics and chaos: with applications to physics,
biology, chemistry, and engineering. CRC Press, 2018.

[106] Richard S Sutton, Hamid R Maei, and Csaba Szepesvári. A convergent o(n)
temporal-difference algorithm for off-policy learning with linear function ap-
proximation. In Advances in neural information processing systems, pages 1609–
1616, 2009.

[107] Richard S Sutton, Hamid Reza Maei, Doina Precup, Shalabh Bhatnagar, David
Silver, Csaba Szepesvári, and Eric Wiewiora. Fast gradient-descent methods for
temporal-difference learning with linear function approximation. In Proceedings
of the 26th Annual International Conference on Machine Learning, pages 993–
1000. ACM, 2009.

[108] Vasilis Syrgkanis, Alekh Agarwal, Haipeng Luo, and Robert E Schapire. Fast
convergence of regularized learning in games. In Advances in Neural Information
Processing Systems, pages 2989–2997, 2015.

[109] Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evalu-
ation of generative models. arXiv preprint arXiv:1511.01844v3, 2016.

[110] P. Thomas. Genga: A generalization of natural gradient ascent with posi-
tive and negative convergence results. In International Conference on Machine
Learning, 2014.

[111] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradi-
ent by a running average of its recent magnitude. COURSERA: Neural networks
for machine learning, 4(2):26–31, 2012.

[112] Federica Tinti. Numerical solution for pseudomonotone variational inequality
problems by extragradient methods. In Variational analysis and applications,
pages 1101–1128. Springer, 2005.

[113] Giulio Tononi, David Balduzzi, and MS Gazzaniga. Toward a theory of con-
sciousness. In The Cognitive Neurosciences, pages 1201–1220. MIT Press, 2009.

[114] Masatoshi Uehara, Issei Sato, Masahiro Suzuki, Kotaro Nakayama, and Yutaka
Matsuo. Generative adversarial nets from a density ratio estimation perspective.
arXiv preprint arXiv:1610.02920, 2016.

[115] Yue Wang, Alexandra Meliou, and Gerome Miklau. A consumer-centric market
for database computation in the cloud. Technical report, University of Mas-
sachusetts, 2015.

[116] Hassler Whitney. Geometric integration theory, volume III. Courier Corpora-
tion, 2012.

249

[117] Alan Wolf, Jack B. Swift, Harry L. Swinney, and John A. Vastano. Determining
lyapunov exponents from a time series. Physica, pages 285–317, 1985.

[118] Raymond A Yeh, Chen Chen, Teck-Yian Lim, Alexander G Schwing, Mark
Hasegawa-Johnson, and Minh N Do. Semantic image inpainting with deep
generative models. In CVPR, volume 2, page 4, 2017.

[119] Donggeun Yoo, Namil Kim, Sunggyun Park, Anthony S Paek, and In So Kweon.
Pixel-level domain transfer. arXiv preprint arXiv:1603.07442, 2016.

[120] F. Yousefian, A. Nedić, and U. V. Shanbhag. Optimal robust smoothing ex-
tragradient algorithms for stochastic variational inequality problems. In IEEE
53rd Annual Conference on Decision and Control (CDC), 2014.

[121] Matthew D Zeiler, Dilip Krishnan, Graham W Taylor, and Rob Fergus. De-
convolutional networks. In Computer Vision and Pattern Recognition (CVPR),
2010 IEEE Conference on, pages 2528–2535. IEEE, 2010.

[122] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaolei Huang, Xiaogang
Wang, and Dimitris Metaxas. Stackgan: Text to photo-realistic image synthesis
with stacked generative adversarial networks. arXiv preprint, 2017.

[123] Junbo Zhao, Michael Mathieu, and Yann LeCun. Energy-based generative
adversarial network. arXiv preprint arXiv:1609.03126, 2016.

[124] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-
to-image translation using cycle-consistent adversarial networks. arXiv preprint,
2017.

[125] Martin Zinkevich. Online convex programming and generalized infinitesimal
gradient ascent. In Proceedings of the Twentieth International Conference on
Machine Learning. School of Computer Science, Carnegie Mellon University,
2003.

250

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Introduction
	Technical Background and Motivating Problems
	Optimization
	Convex Optimization
	Online Optimization

	Equilibration and Game Theory
	Generative Adversarial Networks
	Dynamical Systems
	Variational Inequalities and Monotone Operator Theory

	Motivating Problems

	Online Monotone Equilibration
	Purpose of Research
	Introduction
	Performance Metric
	Online Variational Inequality Problems

	Online Monotone Equilibration
	Upper Bound for Cumulative Path Integral Loss
	Derivation of No-Regret Algorithms for OME

	Algorithmic Game Theory and Related Work
	Applications
	Concave Games
	A Machine Learning Economy (SM)
	GTD Algorithms (M)
	Constant-Linear GANs (M)

	Conclusion
	Up Next

	Linear Quadratic GANs and Crossing-the-Curl
	Purpose of Research
	Introduction
	Generative Adversarial Networks
	Convergence of Equilibrium Dynamics
	Variational Inequalities
	The ODE Method and Hurwitz Jacobians

	The Linear Quadratic GAN
	Crossing-the-Curl
	Discussion and Relation to Other Methods

	Analysis of the Full System
	Learning the Variance: The (w2,a)-Subsystem
	Learning the Covariance: The (W2,A)-Off-Diagonal Subsystem

	Experiments
	Conclusion
	Up Next

	Generative Multi-Adversarial Networks
	Purpose of Research
	Introduction
	Generative Adversarial Networks to GMAN
	GMAN: A Multi-adversarial Extension

	A Forgiving Teacher
	Soft-Discriminator
	Using the Original Minimax Objective
	Automating Regulation

	Evaluation
	Metric
	Experiments

	Conclusion and Future Work
	Up Next

	Analyzing Non-Monotone Games
	Purpose of Research
	Introduction
	Identifying Boundaries of Attraction
	Improving the BoA Identification Algorithm
	A New Market Model
	Cloud Services Experiment
	Lyapunov GANs
	GAN Experiments
	CL and LQ-GAN
	Mixture of Gaussians
	MNIST
	CIFAR-10

	Conclusion and Future Work

	Conclusion and Future Work
	Future Work

	Online Monotone Equilibration
	Pseudo-monotonicity in Integral Form
	Theorem 1: OCO OMO
	F is monotone over X = [0,1]2
	f is non-convex over X = [0,1]2

	Theorem 2: OME OCO for Positive definite Affine Maps
	Monotone Equilibration with o=x*
	Upper and Lower Bounds for Path Integral Loss
	Proximal Maps
	Lower Bounds
	Upper Bounds
	OED and OMP Regret Bounds
	Combining Upper and Lower Bounds

	A Curl Bound for a Different Path Integral
	Online Monotone Games and Auto-Welfare
	Algorithmic Game Theory: A Venn Diagram
	a. Smooth
	b. Smooth, Convex
	c. Smooth, Convex, Monotone
	d. Smooth, Convex, Socially-Convex
	e. Smooth, Convex, Monotone, Socially-Convex
	f. Convex
	g. Convex, Monotone
	h. Convex, Socially-Convex
	i. Convex, Monotone, Socially-Convex

	Concave Games
	Linear Cournot Competition
	Linear Resource Allocation
	Congestion Control Protocols

	Machine Learning Network Motivation
	GTD Algorithms
	Constant-Linear GANs
	Path Integral Loss for Minimax Games
	Composition of Monotone Fields

	Linear Quadratic GANs and Crossing-the-Curl
	A Survey of Candidate Theories Continued
	Algorithmic Game Theory
	Differential Games
	Equivalence of Monotonicity to Euclidean Contraction

	Nash Equilibrium vs VI Solution
	Table of Maps Considered in Analysis
	Minimax Solution to Constrained Multivariate LQ-GAN is Unique
	Divergence of Simultaneous Gradient Descent for the (w1,b)-Subsystem
	Derivation of Crossing-the-Curl
	Monotonicity: Definitions and Requirements
	A Comparison of Monotonicity and Hurwitz
	Hurwitz Does Not Imply Quasimonotonicity
	Monotonicity Does Not Imply Hurwitz
	Monotonicity and Hurwitz Can Overlap

	Crossing-the-Curl Can Make Monotone Fields, Non-Monotone
	Analysis of the (w1,b)-Subsystem
	A Linear Combination of F, JF, and JF is Not Quasimontone for the 1-d LQ-GAN
	Analysis of the (w2,a)-Subsystem
	Monotonicity of Fcc, Feg, and Fcon for the (w2,a)-Subsystem

	Progressive Learning of LQ-GAN
	Analysis of the (W2,A)-Subsystem for the N-d LQ-GAN
	An O(N/k) Algorithm for LQ-GAN
	Convergence Rate

	Deep Learning Specifications and Results
	Images at End of Training for Mixture of Gaussians
	Mixture of Gaussians Network Architectures
	Images at End of Training for CIFAR10
	CIFAR10 Network Architectures

	Generative Multi-Adversarial Networks
	Accelerated Convergence and Reduced Variance
	Additional GMAM Tables
	Generated Images

	Related Work
	Softmax Representability
	Unconstrained Optimization
	Boosting with AdaBoost.OL
	Experimental Setup

	Analyzing Non-Monotone Games
	BoA Algorithm Pseudocode
	Polynomial Coefficients for Demand Function Qij
	Individual Cloud Profit Functions Non-Concave
	Model Parameters for Scenario 1
	Model Parameters for Scenario 2
	Model Parameters for BoA Demonstration

	Bibliography

