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Abstract

Recent advances in semi-supervised learning with deep generative models have
shown promise in generalizing from small labeled datasets (xl,yl) to large unla-
beled ones (xu). When the codomain (y) has known structure, a large unfeatured
dataset (yu) is potentially available. We develop a parameter-efficient, deep semi-
supervised generative model for the purpose of exploiting this untapped data source.
Empirical results show improved performance in disentangling variable semantics
as well as improved discriminative prediction on a new MNIST task.

1 Introduction

Semi-supervised learning aims to improve learning accuracy when a large source of unlabeled data
(xu) is available in addition to a small labeled dataset (xl,yl). Under this setting, inductive learn-
ing specifically judges accuracy of the learned mapping f : x → y for all x, while transductive
learning focuses on accuracy of this mapping for only xu. Semi-supervised techniques have signifi-
cantly improved inductive and transductive learning accuracy for applications ranging from website
classification [1], to natural language processing [23], to image segmentation and search [4, 16].

Separately, deep probabilistic models leveraging advances in variational inference have made gains
in modeling text [15], images [6], and speech [3]. The architecture common to these models is a
deep generative model deemed the variational autoencoder [9]. Kingma et al. [2014] developed an
extension of this architecture to semi-supervised tasks with excellent semi-supervised classification
performance on MNIST [11].

One advantage of using generative models for semi-supervised learning is the availability of a
mechanism for generating unobserved data conditioned on the labels. In addition to generating
novel observations, this mechanism can be used for exploring the data manifold and typically reveals
interesting structure suggesting semantics are disentangled during training.

While semi-supervised learning typically focuses on inductive and transductive learning for labels, in
this work, we also stress the importance of inductive accuracy for data generation (f−1 ∼ g : y→ x).
It is the goal of generative accuracy that leads us to explore the possibility of identifying and exploiting
a large source of unfeatured data (yu): y without corresponding x. In general, if 1) we know the
support of y, 2) we have a strong prior belief on p(y), and 3) labelled instances can be easily
synthesized, then yu constitutes a potential data source to be tapped. In this work, we consider
MNIST where the support of y is a discrete finite set, but our approach generalizes to other supports
(e.g., simplex). In this domain, we are able to exploit our prior knowledge of y to improve generative
accuracy, which in turn, improves discriminative accuracy as well.

Our approach is essentially to “invert” the deep generative model used for standard semi-supervised
learning and train it in reverse, thereby considering the flipped semi-supervised task of learning
g : y → x given (xl,yl) and yu. A key feature of our approach is that f and g are learned jointly
with tied parameters for learning efficiency and more critically, model regularization.
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1.1 MNIST Untapped

The latent variable manifolds learned by training variational autoencoders on MNIST are typically
smooth. For example, Kingma et al.’s M2 [10] appears to learn a smooth manifold that is easily
travelled by considering any convex combination of the disentangled latent factors: traversing the
manifold results in images that vary in stroke thickness, style, angle, and letter skew. This suggests
that any latent vector in the cross-product of latent factors can be used in combination with any choice
of digit class (e.g., y is a onehot vector) to generate a legitimate image of a digit. In other words, any
z× y can be considered a viable source for generating digit images. We ought to be able to exploit
this knowledge to better learn the inductive, f , and generative, g, mappings.

We appeal to intuition in the context of a vanilla autoencoder (see Figure 1) and carry over insights
developed in that setting to the variational model where distributions replace point estimates. Although
variational autoencoders have been shown to behave differently from vanilla autoencoders (specifically
with regards to representation learning), our results suggest the insights gleaned are valuable.

X
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Figure 1: Typical autoencoder training roughly learns a one-to-one mapping only over the training
set (solid red). When the model is introduced to new (z,y) combinations and asked to decode them,
its predictions often map back to (z′,y′) different from the original input (dashed, blue)! With our
new approach, the model explicitly receives a signal to build a one-to-one mapping for (z,y) outside
the training set (solid blue). The hope is that this encourages the model to be internally consistent.

2 Deep Semi2-Supervised Generative Model

Motivated by the above problem, we consider the marriage of two probabilistic models to describe the
data. The first is a probabilistic model (M2) that describes an MNIST image, x, as being generated
by a onehot vector y in addition to a latent vector z. The joint distribution is assumed to factorize as
p(x,y, z) = p(y)p(z)p(x|y, z), so the data are explained by the generative process:

p(y) = Cat(π = 1/10), p(z) = U(zlow, zhi), pθ(x|y, z) = f(x;y, z, θ). (1)
Here, p(y) and p(z) are prior distributions and f(x;y, z, θ) is a distribution whose parameters are
functions of y and z (e.g., multivariate Bernoulli with p = bθ(y, z)). We choose a uniform prior over
the categories for y, a clipped uniform prior for z, and neural networks with weights θ for bθ(y, z).

The second is a probabilistic model that describes the reverse process: z and y are generated by x,
q(x) = Bern(p = 0.5), qφ(y|x) = g(y;x, φ), qφ(z|x,y) = h(z;x,y, φ) (2)

where q(x) is an uninformative, uniform prior. To define qφ(z|x,y) with support limited to [zlow, zhi],
we first draw an intermediate random variable, z̃, from a diagonal Gaussian. We then pass z̃ through
a scaled sigmoid which conforms the Gaussian distribution to [zlow, zhi]; to account for the change
in probability density, we use techniques from normalizing flows [18] (see Appendix A). To model
qφ(y|x) as a categorical distribution, we use the gumbel-softmax / concrete distribution [8, 13], which
is a popular differentiable approximation. While qφ(z|x,y) is unnecessary for generating y, our
reverse model formulation is actually a specific instance of an auxiliary generative model [12], which
was shown to make the variational distribution more expressive. This term also serves an additional
role described next.

Computing the exact posterior of the latent variables y and z (i.e., Bayesian inference) in the first
model, and likewise x in the second model, is intractable due to the non-conjugate priors and non-
linear dependencies (deep nets). Instead, we approximate the posterior distribution with a separate
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non-linear function called a recognition model for inferring or “recognizing” the latent variables. One
of our novel contributions is to reuse qφ(y|x)qφ(z|x,y) as the recognition model for the forward
generative model and p(z)pθ(x|y, z) for the reverse model.

To learn the parameters, θ and φ, we optimize variational lower bounds on the marginal likelihoods
of our data samples. Lower bounds for the forward model are given by

log pθ(x,y) ≥ J lf = Eqφ(z|x,y)
[

log pθ(x|y, z)− log qφ(z|x,y) + log p(y) + log p(z)
]

(3)

log pθ(x) ≥ J uf = Eqφ(y,z|x)
[

log pθ(x|y, z)− log qφ(y, z|x) + log p(y) + log p(z)
]

(4)

respectively for labeled and unlabeled samples. We can take advantage of unfeatured labels by
constructing a lower bound for the reverse model:

log qφ(y) ≥ J ur = Ep(z)pθ(x|y,z)
[

log qφ(y, z|x)− log pθ(x|y, z) + log q(x)− log p(z)
]
. (5)

The marginal likelihoods for the forward and reverse models, respectively, over the whole dataset are

Jf =
∑

(x,y)∼p̃l

J lf +
∑

x∼p̃ux

J uf , Jr =
∑

y∼p̃uy

J ur . (6)

The predictive distribution for y appears in (4) and (5), but not (3). As in [10], we introduce an
additional discriminative objective to each model that can be learned from the labeled data:

J df = E(x,y)∼p̃lLy(qφ(·|x),y), J dr = E(x,y)∼p̃lLx(pθ(·|y, z),x) (7)

where Ly can, for example, either be −E(x,y)∼p̃l log qφ(y|x) or a discriminative loss on the mean of
the distribution; Lx is treated similarly.

Technically, the objectives Jf and Jr arise from two different generative models. We could introduce
an additional latent variable that interpolates between both models as in Conditional Bottleneck
Density Estimation [20], capturing our uncertainty in the nature of the generative process: is x a
result of y or vice versa? For simplicity, we chose to weight each model equally, leaving this question
for future research:

J = Jf + Jr − αdfJ d
f − αdrJ d

r . (8)

In experiments, the M2 model uses the same architecture but without the Jr term. We learn the
parameters θ and φ by maximizing (8) using Monte Carlo samples for the latent variables —a
technique known as stochastic gradient variational Bayes [9] or stochastic backpropagation [19].
Pseudocode is given in Algorithm 1 in the Appendix where Γ(gθ, gφ) returns a parameter update
increment (e.g., Γ =SGD→ −(gθ, gφ)).

In the model just described, we treat z as a latent variable in the reverse process. In experiments, we
instead treat z as observed and include it as part of our unfeatured dataset, (yu, zu), which reinforces
our prior on z. The proposed model with zu observed is implemented using the Theano [22], Lasagne,
Parmesan, and Scikit-learn packages [17]—code available @ https://github.com/all-umass/untapped.

3 MNIST Experiment

MNIST digit recognition provides a well-known benchmark in machine learning for supervised,
semi-supervised, and unsupervised learning. Here, we construct a new MNIST task where labeled
data is only available for a subset of the digits, 0 − 4. The model is not only expected to attribute
correct semantics to y for digits 0− 4, but also 5− 9, which makes this task particularly challenging.
In other words, the model should be able to generate appropriate images conditioned on one-hots
(e.g., conditioning on y = [1, . . . , 0] should generate an image of a zero). Note that while the model
is provided a signal to attribute the first five dimensions of y to 0− 4, the remaining dimensions are
free to disentangle meaning as the model sees fit; the hope is that 5 − 9 will be ascribed to some
random permutation of the remaining dimensions and not distributed across the dimensions (e.g.,
5 should not be represented by y = [1/10, . . . , 1/10]) or folded into z. We use a 2d z as in [9] to
capture variation in the digits.
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Figure 2: Digit Extraction (means): Our proposed model (left) and M2 (right) generate images
(means, µ) conditioned on one-hot vectors (y). The models are provided a supervised signal to assign
digits 0 − 4 to the first 5 dimensions. No signal is given for assigning the remaining dimensions.
Notice, (left) assigns a unique digit to each dimension, while the digit 9 does not appear in (right).

Figure 2 demonstrates the tendency of our proposed model to encourage y towards the desired
representation. All digits are generated by conditioning on the 10 possible one-hots and the mean
of z over the training set: x′ ∼ pθ(x|y = [1, . . . , 0], z̄ = mean(qφ(z|xl,yl)). In the M2 model, the
digit 8’s representation is distributed across the sixth and seventh dimensions of y. In fact, the digit 9
does not appear to be represented by any one-hot representation in the M2 model. In contrast, our
proposed model has attributed a unique digit to each possible one-hot vector: 0, 1, 2, 3, 4|8,6,5,9,7.

In order to test discriminative generalization, we need to learn the permutation of y found by
each model. To do this, we first generate canonical digits for 5-9 by conditioning on each of
the corresponding one-hots. We then use a logistic regression classifier pre-trained on the entire
dataset to compute a probability distribution over digits for every image, p(digit = i|image). If
j = arg maxi p(digit = i|image) is unique to a single dimension, we assign that dimension the digit
j. We use the highest probability to split ties otherwise. To measure discriminative generalization,
we simply permute y, and compute the cross-entropy over the predictions for digits 5-9. It is
not surprising, given our model’s learned representation, that training with yu results in improved
discriminative generalization. M2 achieves an average cross-entropy loss over 10 trials of 2.30 on
this task while training with unfeatured y achieves 2.07.

Table 1: Test Error: Cross-entropy for predicted distribution over digits vs ground truth.

M2 Untapped
Cross-Entropy 2.30 2.07

4 Related Work

Previous work attempted to exploit this same untapped resource by minimizing the Output Distribution
Matching cost [21], which is the gap between the log marginal probability of the data and the evidence
lower bound (ELBO): KL(p(y)|qφ(y|x)). A large portion of VAE research is devoted to shrinking
this gap to tighten the lower bound, and so any gains made there should transfer to our framework.

Chen et al. [2] equipped the GAN minimax objective with a lower bound on the mutual information
between the observed data (x) and the latent code (y here) given z:

I(y;x′ ∼ p(x|y, z)) ≥ Ep(y)pθ(x|y,z)
[

log qφ(y|x)
]

+H(y) (9)

If we fix z in our reverse model, this is equivalent to the first term in equation (5) sans H(y). This
objective can be also viewed as reconstruction error on the reverse model which is what motivated
our proposed model. ∆-GAN [5] is also closely related as it explicitly trains with samples drawn
from the prior p(y), effectively creating an unfeatured dataset.

Our work can also be seen as strengthening the influence of the prior distribution. By directly feeding
yu ∼ p(y) to our model, we are effectively treating p(y) as “truth”, therefore, this work follows in
line with that of [14] and [7] where a GAN and scaled-KL-divergence term are used, respectively, to
more harshly penalize deviations of the posterior from the prior.

5 Conclusion & Future Work

In this work, we identified a potentially untapped resource, unfeatured labels. We then proposed
an extension to the semi-supervised variational autoencoder capable of leveraging this newfound

4



training signal. In future work, we will investigate our model’s ability to improve performance on
computer vision and NLP tasks. For example, image captioning requires assigning a short (limited
length) description to an image. In this scenario, images are plentiful, yet captioned images are
rare. Furthermore, captions follow a very specific structure enforced by the language grammar—this
allows them to be synthesized which would provide a large untapped label source.
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A LogisticFlow

We use a normalizing flow [18] designed to warp a distribution to a d-dimensional hypercube, [a, b]d.
The flow function and its inverse are defined below in equations (10) and (13). Equation (16) allows
linear time computation of the log-determinant of the Jacobian which is necessary to efficiently
compute the log-density of the resulting distribution over the hypercube using only the original
Gaussian density.

The scaled sigmoid transformation z̃→ z is simply given by

ni(z̃) = a+
b− a

1 + e−z̃i
= a+ (b− a)σ(z̃i) (10)

zi = ni(ỹ) ∀i ∈ {1, . . . , I − 1}. (11)

The inverse transformation is then

ẑi =
zi − a
b− a

(12)

n−1i (z) = log
( ẑi

1− ẑi

)
. (13)

The log determinant of the Jacobian can then be computed as

∂ni
∂z̃j

= I(i = j)(b− a)σ(1− ẑi)σ(ẑi) (14)

|∂n
∂z̃
| = (b− a)d

∏
i

σ(1− ẑi)σ(ẑi) (15)

log|∂n
∂z̃
| = d log(b− a) +

∑
i

log(σ(1− ẑi)) + log(σ(ẑi)). (16)

B Alternative ELBO

As mentioned in the paper, we actually treat z as observed in the reverse model giving us (yu, zu)
pairs. This results in a minor modification to the evidence lower bound in equation (5).

log qφ(y, z) ≥ Epθ(x|y,z)
[

log qφ(y|x) + log qφ(z|x,y)− log pθ(x|y, z) + log q(x)
]

(17)
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C Algorithm

Algorithm 1 Learning the Model
while training() do
D ← getRandomMiniBatch()
J = 0
for all {xi,yi} ∈ D{x,y} do
zi ∼ qφ(z|xi,yi)
J += αfJ lf − αdfJ df
zi ∼ p(z)
J += αrJ lr − αdrJ dr

end for
for all xi ∈ Dx do
yi ∼ qφ(y|xi), zi ∼ qφ(z|xi,yi)
J += αfJ uf

end for
for all yi ∈ Dy do
zi ∼ p(z), xi ∼ pθ(xi|yi, zi)
J += αrJ ur

end for
(gθ, gφ)← (−∂J

α

∂θ ,−
∂Jα
∂φ )

(θ, φ)← (θ, φ) + Γ(gθ, gφ)
end while

D Network Architectures & Training Setup

• Optimizer: Adam with gradient clipping (−1, 1), β1 = 0.9, β2 = 0.999, ε = 1e− 4

• Monte Carlos samples to estimate expectation: 1

• Priors are all uniform distributions

• zlow, zhi = −1.5, 1.5

• x-discriminative loss: L2

• y-discriminative loss: cross-entropy

• z-dimensionality: 2

• Hidden unit nonlinearities: tanh

• x→ y hidden units: [50, 50]

• x→ y sampling distribution: Concrete distribution / Gumbel-softmax

• x→ y output nonlinearity: None

• (x,y)→ z hidden units: [10, 10]

• x→ y sampling distribution: diagonal Gaussian

• (x,y)→ z output nonlinearity: sigmoid

• (y, z)→ x̃ hidden units: [250, 500]

• x→ y sampling distribution: Bernoulli distribution

• (y, z)→ x̃ output nonlinearity: None

• (αdf , α
d
r) = (10, 0.1)

• Batch size: 10000

• # of training epochs: 150

• Learning rate: 0.01
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E ELBOs

E.1 Forward Model with Labeled Data

log pθ(x, y) = log
(∫

z

pθ(x, y, z)dz
)

(18)

= log
(∫

z

pθ(x, y, z)
qφ(z|x, y)

qφ(z|x, y)
dz
)

(19)

= log
(
Eqφ(z|x,y)

[pθ(x, y, z)
qφ(z|x, y)

])
(20)

≥ Eqφ(z|x,y)
[

log
(pθ(x, y, z)
qφ(z|x, y)

)]
(21)

= Eqφ(z|x,y)
[

log pθ(x, y, z)− log qφ(z|x, y)
]

(22)

= Eqφ(z|x,y)
[

log pθ(x|y, z) + log p(y) + log p(z)− log qφ(z|x, y)
]

(23)

= ELBOlf (24)

KL
(
qφ(z|x, y)

∣∣∣pθ(z|x, y)
)

= Eqφ(z|x,y)
[

log
(qφ(z|x, y)

pθ(z|x, y)

)]
(25)

= Eqφ(z|x,y)
[

log qφ(z|x, y)
]
− Eqφ(z|x,y)

[
log pθ(z|x, y)

]
(26)

= Eqφ(z|x,y)
[

log qφ(z|x, y)
]
− Eqφ(z|x,y)

[
log

pθ(x, y, z)

pθ(x, y)

]
(27)

= Eqφ(z|x,y)
[

log qφ(z|x, y)− log pθ(x, y, z)
]

+ log pθ(x, y) (28)

= Eqφ(z|x,y)
[

log qφ(z|x, y)− log pθ(x|y, z)− log p(y)− log p(z)
]

+ log pθ(x, y)

(29)

= −ELBOlf + log pθ(x, y) (30)

⇒ ELBOlf = log pθ(x, y)−KL
(
qφ(z|x, y)

∣∣∣pθ(z|x, y)
)

(31)

The ELBO bound on the marginal log likelihood becomes tighter as qφ(z|x, y) better approximates
pθ(z|x, y).

E.2 Forward Model with Unlabeled Data

log pθ(x) = log
(∫

y×z
pθ(x, y, z)dydz

)
(32)

= log
(∫

y×z
pθ(x, y, z)

qφ(y, z|x)

qφ(y, z|x)
dydz

)
(33)

= log
(
Eqφ(y,z|x)

[pθ(x, y, z)
qφ(y, z|x)

])
(34)

≥ Eqφ(y,z|x)
[

log
(pθ(x, y, z)
qφ(y, z|x)

)]
(35)

= Eqφ(y,z|x)
[

log pθ(x, y, z)− log qφ(y, z|x)
]

(36)

= Eqφ(y,z|x)
[

log pθ(x|y, z) + log p(y) + log p(z)− log qφ(y, z|x)
]

(37)

= ELBOuf (38)
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KL
(
qφ(y, z|x)

∣∣∣pθ(y, z|x)
)

= Eqφ(y,z|x)
[

log
(qφ(y, z|x)

pθ(y, z|x)

)]
(39)

= Eqφ(y,z|x)
[

log qφ(y, z|x)
]
− Eqφ(y,z|x)

[
log pθ(y, z|x)

]
(40)

= Eqφ(y,z|x)
[

log qφ(y, z|x)
]
− Eqφ(y,z|x)

[
log

pθ(x, y, z)

pθ(x)

]
(41)

= Eqφ(y,z|x)
[

log qφ(y, z|x)− log pθ(x, y, z)
]

+ log pθ(x) (42)

= Eqφ(y,z|x)
[

log qφ(y, z|x)− log pθ(x|y, z)− log p(y)− log p(z)
]

+ log pθ(x)

(43)
= −ELBOuf + log pθ(x) (44)

⇒ ELBOuf = log pθ(x)−KL
(
qφ(y, z|x)

∣∣∣pθ(y, z|x)
)

(45)

The ELBO bound on the marginal log likelihood becomes tighter as qφ(y, z|x) better approximates
pθ(y, z|x).

E.3 Reverse Model with Labeled Data

log qφ(x, y) = log
(∫

z

qφ(x, y, z)dz
)

(46)

= log
(∫

z

qφ(x, y, z)
p(z)

p(z)
dz
)

(47)

= log
(
Ep(z)

[qφ(x, y, z)

p(z)

])
(48)

≥ Ep(z)
[

log
(qφ(x, y, z)

p(z)

)]
(49)

= Ep(z)
[

log qφ(x, y, z)− log p(z)
]

(50)

= Ep(z)
[

log qφ(z|x, y) + log qφ(y|x) + log q(x)− log p(z)
]

(51)

= ELBOlr (52)

KL
(
p(z)

∣∣∣qφ(z|x, y)
)

= Ep(z)
[

log
( p(z)

qφ(z|x, y)

)]
(53)

= Ep(z)
[

log p(z)
]
− Ep(z)

[
qφ(z|x, y)

]
(54)

= Ep(z)
[

log p(z)
]
− Ep(z)

[
log

qφ(x, y, z)

qφ(x, y)

]
(55)

= Ep(z)
[

log p(z)− log qφ(x, y, z)
]

+ log qφ(x, y) (56)

= Ep(z)
[

log p(z)− log qφ(z|x, y)− log qφ(y|x)− log q(x)
]

+ log qφ(x, y)

(57)

= −ELBOlr + log qφ(x, y) (58)

⇒ ELBOlr = log qφ(x, y)−KL
(
p(z)

∣∣∣qφ(z|x, y)
)

(59)

We present the KL using p(z) instead of p(z|x, y) for practical reasons—we do not have a mechanism
for easily sampling from p(z|x, y) or computing its density. The ELBO bound on the marginal
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log likelihood becomes tighter as p(z) better approximates qφ(z|x, y). This will likely not be a
tight bound, so we expect maximizing this ELBO will do more harm than good. Experiments (not
included) support this intuition, so we have omitted it from the model.

E.4 Reverse Model with Unlabeled Data

log qφ(y) = log
(∫

x×z
qφ(x, y, z)dxdz

)
(60)

= log
(∫

x×z
qφ(x, y, z)

pθ(x, z|y)

pθ(x, z|y)
dxdz

)
(61)

= log
(
Epθ(x,z|y)

[qφ(x, y, z)

pθ(x, z|y)

])
(62)

≥ Epθ(x,z|y)
[

log
(qθ(x, y, z)
pθ(x, z|y)

)]
(63)

= Epθ(x,z|y)
[

log qφ(x, y, z)− log pθ(x, z|y)
]

(64)

= Epθ(x,z|y)
[

log qφ(z|x, y) + log qφ(y|x) + log q(x)− log pθ(x|y, z)− log p(z)
]

(65)

= Epθ(x|y,z)p(z)
[

log qφ(z|x, y) + log qφ(y|x) + log q(x)− log pθ(x|y, z)− log p(z)
]

(66)
= ELBOur (67)

KL
(
pθ(x, z|y)

∣∣∣qφ(x, z|y)
)

= Epθ(x,z|y)
[

log
(pθ(x, z|y)

qφ(x, z|y)

)]
(68)

= Epθ(x,z|y)
[

log pθ(x, z|y)
]
− Eqφ(y,z|x)

[
log qφ(x, z|y)

]
(69)

= Epθ(x,z|y)
[

log pθ(x, z|y)
]
− Eqφ(y,z|x)

[
log

qφ(x, y, z)

qφ(y)

]
(70)

= Epθ(x,z|y)
[

log pθ(x, z|y)− log qφ(x, y, z)
]

+ log qφ(y) (71)

= Epθ(x,z|y)
[

log pθ(x|y, z) + log p(z)− log qφ(z|x, y) (72)

− log qφ(y|x)− log q(x)
]

+ log qφ(y)

= −ELBOur + log qφ(y) (73)

⇒ ELBOur = log qφ(y)−KL
(
pθ(x, z|y)

∣∣∣qφ(x, z|y)
)

(74)

The ELBO bound on the marginal log likelihood becomes tighter as pθ(x, z|y) better approximates
qφ(x, z|y).

F Motivation for Untapped Starting with M2

In the M2 model [9], the latent factors z are assumed to be independent of the class labels y. This is
important for modeling purposes. For example, z may represent the style of a handwritten digit while
y may denote the number represented by that digit. We can write any digit we like with any given
style, therefore, it is natural to think of these two variables as independent. This implies that the joint
distribution over data, labels, and latent factors can be simplified as follows:

p(x, y, z) = p(z)p(y|z)p(x|y, z) (75)
= p(z)p(y)p(x|y, z). (76)
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Figure 3: Forward Generative Graphical Model

This generative process directly implies the corresponding graphical model (see Figure 3).

In variational inference, we propose an approximate distribution for the posterior over the latent
variables, which in this case are y and z. Notice that, by d-separation, z and y are not necessarily
independent given x, so we cannot simplify the chain rule factorization of the posterior:

q(y, z|x) = q(y|x)q(z|x, y) (77)

Moreover, this particular choice for the factorization was made because it explicitly represents the
discriminative distribution over labels, q(y|x), which is convenient for the auxiliary classification task.
This recognition process directly implies the corresponding recognition architecture (see Figure 4).

Figure 4: Forward Recognition Network Architecture

This explains why Kingma et al. chose this structure for their M2 model. Given their choice, we
would like to define a reverse model without creating any additional networks. This cuts down on the
number of weights we need to learn which helps prevent overfitting. The forward model treats y and
z as latent variables and x as observed. In the reverse, we will do the reverse! The variables y and z
will be observed and x will be latent. We can reuse the networks in the forward recognition model to
define the generative process for the reverse model:

q(x, y, z) = q(x)q(y|x)q(z|x, y). (78)

The recognition model for the reverse model will be used to approximate the posterior over x. In this
case, we can reuse the generative model for the forward model: p(x|y, z).
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