
Published as a workshop paper at 2nd Learning with Limited Data (LLD) Workshop, ICLR 2019

WEAKLY SEMI-SUPERVISED NEURAL TOPIC MODELS

Ian Gemp∗
DeepMind, London, UK
imgemp@google.com

Ramesh Nallapati, Ran Ding, Feng Nan, Bing Xiang
Amazon Web Services, New York, NY 10001, USA
{rnallapa,rding,nanfen,bxiang}@amazon.com

ABSTRACT

We consider the problem of topic modeling in a weakly semi-supervised setting.
In this scenario, we assume that the user knows a priori a subset of the topics she
wants the model to learn and is able to provide a few exemplar documents for
those topics. In addition, while each document may typically consist of multiple
topics, we do not assume that the user will identify all its topics exhaustively.
Recent state-of-the-art topic models such as NVDM, referred to herein as Neural
Topic Models (NTMs), fall under the variational autoencoder framework. We ex-
tend NTMs to the weakly semi-supervised setting by using informative priors in
the training objective. After analyzing the effect of informative priors, we propose
a simple modification of the NVDM model using a logit-normal posterior that we
show achieves better alignment to user-desired topics versus other NTM models.

1 INTRODUCTION

Topic models are probabilistic models of data that assume an abstract set of topics underlies the data
generating process (Blei, 2012). These abstract topics are often not only useful as feature represen-
tations for downstream tasks, but also for exploring and analyzing a corpus. Topic models are used
to explore natural scenes in images (Fei-Fei and Perona, 2005; Mimno, 2012), genetics data (Rogers
et al., 2005), and numerous text corpora (Newman et al., 2006; Mimno and McCallum, 2007).

While latent Dirichlet allocation (LDA) serves as the classical benchmark for topic models, recent
state-of-the-art topic models such as NVDM (Miao et al., 2016) fall under the variational autoen-
coder (VAE) framework (Kingma and Welling, 2013), which we refer to as Neural Topic Models
(NTMs). NTMs leverage the flexibility of deep learning to fit an approximate posterior using vari-
ational inference. This posterior can then be used to efficiently predict the topics contained in a
document. NTMs have been shown to model documents well, as well as associate a set of meaning-
ful top words with each topic (Miao et al., 2017).

Often, the top words associated with each extracted topic only approximately match the user’s in-
tuition. Therefore, the user may want to guide the model towards learning topics that better align
with natural semantics by providing example documents. To our knowledge, supervision has been
explored in more classical LDA models, but has not been explored yet in the NTM literature.

Labeling the existence of topics in each document across a corpus is prohibitively expensive. Hence,
we focus on a weak form of supervision. Specifically, we assume a user may identify the existence
of a single topic in a document. Furthermore, if a user does not specify the existence of a topic, it
does not mean the topic does not appear in the document.

The main contribution of our work is an NTM with the ability to leverage minimal user supervision
to better align topics to desired semantics.

2 BACKGROUND: NEURAL TOPIC MODELS

Topic models describe documents (typically represented as bags-of-words) as being generated by a
mixture of underlying abstract topics. Each topic is represented as a distribution over the words in
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a vocabulary so that each document can be expressed as a mixture of different topics and its words
drawn from the associated mixture distribution.

A Neural Topic Model is a topic model constructed according to the variational autoencoder (VAE)
paradigm. The generative process for a document x given a latent topic mixture υ is υ ∼ p(υ), x ∼
pθ(x|υ), where p(υ) is the prior and θ are learned parameters. The marginal likelihood pθ(x) and
posterior pθ(υ|x) are in general intractable so a standard approach is to introduce an approximate
posterior, qφ(υ|x), and seek maximization of the evidence lower bound (ELBO):

log pθ(x) ≥ Eqφ(υ|x)
[

log pθ(x|υ)
]
−DKL(qφ(υ|x)||p(υ))︸ ︷︷ ︸

ELBO(x;θ,φ)

. (1)

The reparamterization trick (Kingma and Welling, 2013) lets us train this model via stochastic opti-
mization. The most commonly used reparameterization is for sampling from a Gaussian with diag-
onal covariance, e.g., υ = µ(x) + σ(x)ε, ε ∼ N (0, 1) where µ(x) and σ(x) are neural networks.

3 WEAKLY SEMI-SUPERVISED TOPIC MODELING

As motivated in the introduction, the topics extracted from unsupervised topic modeling can be chal-
lenging to interpret for a user (see Table 1). It is often the case that a user has a set of “ground truth”
topics in mind that they would like the model to align with. We focus on the setting where a user is
presented a subset of documents and identifies at least a single topic for each of the documents.

(U) rf harvesting energy chains documents (S) recommendation retrieval item document items
consumption compression shortest texts retrieval filtering documents collaborative preferences engine

Table 1: Upon scanning topics extracted by an unsupervised (U) NVDM for the AAPD ArXiv dataset, the
user recognizes a few words relevant to the topic “information retrieval”. Supervision (S) leveraging exemplar
documents containing the topic helps the model to better align the topic to the desired semantics.

We emphasize two challenging components in our setting. First, it is semi-supervised in the sense
that only a small subset of documents is labeled by the user. Second, the supervision is weak in the
sense that the user does not necessarily identify all the topics that are present in a document.

We define “ground truth” word rankings for each topic using a relative chi-square association metric,
a common measure of word association. Specifically, we compute the chi-square statistics between
the occurrence of each word and occurrence of each document class using the ground truth topic
labels. We then divide the chi-square statistic for each word by the average of its chi-square statistics
over all labeled topics, giving us a relative importance that is discriminative across topics. The top-
10 words for each topic are then the words with highest relative importance. To evaluate alignment
of topics extracted by an NTM to these “ground truth” topics, we compute the average normalized
point-wise mutual information (NPMI) (Bouma, 2009) between each word in the NTM’s topics
and each word in the “ground truth” topics—a higher score indicating the NTM’s extracted words
often co-occur with the ground truth’s across Wikipedia. We refer to this score as pairwise-NPMI
(P-NPMI). We additionally report the average NPMI computed between all word pairs within each
NTM topic (NPMI) as a measure of topic coherence as well as NPMI separately averaged over just
supervised topics (S-NPMI) and unsupervised topics (U-NPMI).

4 OUR APPROACH

Our approach focuses on extending the NTM to the semi-supervised setting. Our method is based
on modifying the prior, pi(υi), of a VAE to incorporate user label information, where pi(υi) is the
prior distribution over the latent variables for the ith document. As discussed above, we assume
the user provides partial binary labels indicating the existence of topics in a document (1=exists,
0=unlabeled). We would like to encourage the posterior samples of the model, υi ∼ qφ(υi|xi), to
match the true presence of topics in a document.

In the case of a Gaussian posterior (NVDM), a natural interpretation of υi is as the logits of the prob-
abilities that each topic exists. Therefore, to recover probabilities, we simply sigmoid the outputs
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of our encoder. Given this interpretation for semi-supervision, we set pi(υik) to beN (µik, 1), where

µik =


logit(0.9999) if document i is labeled to

contain topic k,
logit(pk+) else if topic k is supervised,

logit(0.5) = 0 otherwise,

(2)

and pk+ is the class-prior probability, i.e. the probability that any given document contains topic
k. Note that pk+ can be estimated from PU data (Jain et al., 2016). In experiments, we instead use
the mean class-prior probability for all topics (p̄+) and are still able to obtain high performance
suggesting this approach is robust to estimation error.

In order to extract topics from the model, we condition the generative distribution, pθ(x|υ), on the
logits of each of the possible approximate onehot vectors, e.g., υ1=logit([0.9999, 0.0001, . . .])
for topic 1. After conditioning on υk, we observe the mean of the conditional distribution, ξk. We
then subtract from each ξk the mean of ξ over the topics, i.e., ξ̃k = ξk− ξ̄. The indices corresponding
to the top-10 values of ξ̃k indicate the top-10 words associated with each topic k.

We also explore using two other posteriors. One is the Concrete / Gumbel-softmax approximation to
the Bernoulli (Jang et al., 2016; Maddison et al., 2016) which more closely matches our goal of mod-
eling the existence of topics in documents. The differentiable posterior qφ(υ|x) = Concrete(π, τ)
can be sampled with Equations (3), (4), and (5):

u ∼ U(0, 1) (3)
η = logit(π) + logit(u) (4)

υ = sigmoid
(
η/τ
)

(5)

πik =


0.9999 if document i is labeled to

contain topic k,
pk+ else if topic k is supervised,
0.5 otherwise.

(6)

where τ is a hyperparameter such that υ ∼ Ber(π) as τ → 0, sigmoid(r) = (1 + e−r)−1, and
logit(p) = sigmoid−1(p) = log(p/(1− p)). The prior is p(υik) ∼ Concrete(πik, τ) where
πik is the prior probability defined in Equation (6). The log-density of Concrete(π, τ) is given in
Section C.3.2 of (Jang et al., 2016) and we use the Bernoulli-DKL as an approximation. The other
posterior we consider is a logit-normal distribution, for which the logit(υ) is normally distributed.
Samples are easily obtained by taking the sigmoid of samples from a normal distribution.

COMPARISON OF KULLBACK LIEBLER DIVERGENCES

Our technique of incorporating supervision via informative priors provides a supervised training sig-
nal via the DKL term in Equation 1. Figure 1 compares the Bernoulli and Gaussian (NVDM) DKL

terms against a standard cross-entropy loss. Note DKL is the same for Gaussian and logit-normal.

Figure 1: The Gaussian-DKL provides
the strongest topic encoding signal. The
Bernoulli DKL is approximately linear
with finite divergence at p = 0. The log
loss is very shallow except for where it
diverges at p = 0.

In Figure 1, we fix the prior distributions to Ber(πp=0.9999)
for the Bernoulli model and N (µp=logit(0.9999), σp=1)
for NVDM to signify the presence of a topic with high cer-
tainty. The x-axis, p, denotes the posterior probability: πq
for the Bernoulli model and sigmoid(µq) for NVDM/logit-
normal. The cross entropy loss is−πp log p−(1−πp) log(1−
p) where πp is the prior probability. The posterior variance of
the NVDM is assumed to match the prior variance in this fig-
ure. It is clear that NVDMDKL strictly provides the strongest
loss signal for topic prediction.

On the other hand, the Bernoulli model generally achieves
better topic coherence (NPMI). We expect this is due to the
cleaner decoding process relative to NVDM. For example,
the Bernoulli decoding computes the word distribution for the
first out ofK topics as the softmax of 1 ·W1+ . . .+0 ·WK+b
whereW ∈ R|V |×K and b ∈ R|V | are the decoder weight ma-
trix and bias respectively, |V | is the size of the vocabulary, and
Wk refers to the kth row of W . In contrast, NVDM decodes
with 9.2 ·W1 + . . .− 9.2 ·WK + b where 9.2 ≈ logit(0.9999) = −logit(0.0001).
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Therefore, we propose NVDM-σ with a logit-normal posterior. The intuition is to retain both the
strong supervision signal of NVDM as well as the clean decoding used by the Bernoulli model.

5 EXPERIMENTS

We train and evaluate these models on three multi-label datasets: BibTeX, a tagging dataset contain-
ing BibTeX metadata, Delicious, a document classification dataset, and AAPD, a dataset extracted
from the abstracts and subjects of computer science ArXiv papers. We vary three experimental vari-
ables. We consider the percentage of topics supervised to be either 10%, 50%, or 100%. For example,
for Delicious with 20 known topics, we consider supervising 2, 10, and all 20 dimensions of υ. We
also consider the number of provided labeled samples per supervised topic. For example, in one
experiment, when supervising 10% of topics for Delicious, we consider providing 3 or 10 example
documents per topic. Lastly, we vary the number of labels given per document. As described in
Section 3, the user is not required to provide all the topics contained in each document. We consider
documents with only 1 label, up to half the maximum number of labels (5 for Delicious), and fully-
labeled (up to 11). Using 10% topic supervision, 10 labeled documents per topic, and 1 label per
document as an experimental baseline, we vary each experimental variable independently resulting
in six different settings for each of three datasets. Note each setting is still weakly semi-supervised.

In general, all models see a rise in NPMI from informative priors. We observe that NPMI rises on
average by 12% relative to the unsupervised setting and by 15% beyond that to the fully supervised
case. This demonstrates that weak labels are capable of providing a significant boost in performance.

Model Top-10 Words (First Iteration) Top-10 Words (Fully Trained)

NVDM transformation software attributes np necessary word allocation string greedy distance
(0.230) correlation author posterior oracle alternating jointly tree sub trees latent

Bernoulli provides received game white numbers greedy performance procedure allocation distance
(0.219) distinct increasingly effectiveness loss gives jointly speed report existing learn

NVDM-σ rf outperforms produces availability minimal equation allocation distance string greedy jointly
(0.239) correcting increased formalism centrality correction word sub tree learn

Table 2: The supervised topic for AAPD is Computation and Language and the P-NPMI scores are under the
model names. Only 3 documents are provided for 10% of topics with 1 label per document.

Table 2 shows successful alignment for supervised topics. Only three documents are labeled for each
topic; this positive result is important as labeling numerous documents is prohibitively expensive for
commercial applications. Table 3 shows NVDM-σ does best in terms of all NPMI metrics.

Metric NVDM NVDM-σ Bernoulli

P-NPMI 0.852 (0.099) 0.978 (0.048) 0.892 (0.126)

NPMI 0.888 (0.100) 0.960 (0.052) 0.947 (0.049)

U-NPMI 0.915 (0.102) 0.951 (0.055) 0.935 (0.060)

S-NPMI 0.878 (0.094) 0.953 (0.045) 0.951 (0.057)

Table 3: Average performance (with standard deviation in parentheses) relative to best score in each experi-
mental setting. Specifically, for each experimental setting and each metric, we choose the best score among the
3 models and normalize the scores according to it. We then average these relative scores over the experimental
settings. Note NVMD-σ achieves high mean performance with relatively low variance.

6 CONCLUSION

In this work, we proposed supervising Neural Topic Models with weak supervision via informative
priors and explored a variety of model posteriors. A careful analysis of their KL divergences and
decoding mechanisms led us to an NTM with logit-normal posterior which best aligned extracted
topics to desired user semantics.
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A MODEL ARCHITECTURE

We use a feedforward neural network with 2 hidden layers followed by a linear transformation for
the encoder. The first layer is 3K neurons wide and the second is 2K neurons wide where K is
the size given to the latent space. Each hidden layer uses sigmoid nonlinearities. The final layer
is linear and outputs a vector of size 2K for the parameters of the Gaussian posterior. The mean is
obtained from the first K entries of this vector and the standard deviation, σ, is obtained from the
last K entries by applying a softplus, log(1 + ex). Instead of directly modeling the probability π
in Equation (5) for the Bernoulli posterior, we interpret the output of the final linear layer of the
encoder as logit(π). We set the dimensionality of the latent-space υ equal to 50 for 20NG and the
number of ground truth topics for all other datasets. The decoder always consists of a linear layer
followed by a softmax to obtain the multinomial probabilities for each word in the vocabulary.
We set τ = 1 for the Gumbel-softmax sampler. We train with Adadelta, rescale gradients by 0.01
(smaller), and use batch sizes of 256.

B SEMI-SUPERVISED TOPIC MODEL TEST PERFORMANCE

Metric Model Bibtex Delicious ArXiv

PPX
NVDM 15835 1955 1456

Bernoulli 858 1683 1126
NVDM+sig 19217 2175 1035

− log(p(x|υ))
NVDM 450 894 428

Bernoulli 441 900 446
NVDM+sig 442 925 402

P-NPMI
NVDM 0.194 0.074 0.180

Bernoulli 0.234 0.061 0.231
NVDM+sig 0.204 0.061 0.223

NPMI (Avg/S)
NVDM 0.230/0.260 0.149/0.236 0.214/0.183

Bernoulli 0.233/0.267 0.153/0.217 0.211/0.234
NVDM+sig 0.238/0.259 0.180/0.211 0.196/0.205

Table 4: 10 Documents provided for 10% of Topics with 1 label per document.

Metric Model Bibtex Delicious ArXiv

PPX NVDM 19× 109 3149 9119
Bernoulli 7864 1943 992

NVDM+sig 7.08× 109 4204 12332

− log(p(x|υ))
NVDM 448 905 422

Bernoulli 447 919 420
NVDM+sig 443 918 431

P-NPMI NVDM 0.214 0.058 0.211
Bernoulli 0.197 0.060 0.228

NVDM+sig 0.219 0.069 0.239

NPMI (Avg/S) NVDM 0.240/0.219 0.124/0.114 0.217/0.190
Bernoulli 0.222/0.225 0.140/0.134 0.215/0.216

NVDM+sig 0.251/0.249 0.137/0.138 0.234/0.224

Table 5: 10 Documents provided for 50% of Topics with 1 label per document.

6



Published as a workshop paper at 2nd Learning with Limited Data (LLD) Workshop, ICLR 2019

Metric Model Bibtex Delicious ArXiv

PPX NVDM 92.5×1012 17877 290359
Bernoulli 24479 2042 1358

NVDM+sig 18.6×1013 12876 256033

− log(p(x|υ))
NVDM 458 940 409

Bernoulli 447 915 422
NVDM+sig 447 904 415

P-NPMI NVDM 0.206 0.048 0.215
Bernoulli 0.201 0.051 0.235

NVDM+sig 0.230 0.067 0.235

NPMI (Avg/S) NVDM 0.216/0.216 0.104/0.104 0.184/0.184
Bernoulli 0.226/0.226 0.139/0.139 0.244/0.244

NVDM+sig 0.252/0.252 0.145/0.145 0.217/0.217

Table 6: 10 Documents provided for 100% of Topics with 1 label per document.

Metric Model Bibtex Delicious ArXiv

PPX NVDM 19069 1731 1582
Bernoulli 1035 1987 1161

NVDM+sig 21515 2266 1039

− log(p(x|υ))
NVDM 442 884 433

Bernoulli 442 922 446
NVDM+sig 445 928 406

P-NPMI NVDM 0.181 0.043 0.204
Bernoulli 0.209 0.061 0.229

NVDM+sig 0.202 0.060 0.239

NPMI (Avg/S) NVDM 0.212/0.226 0.138/0.131 0.232/0.216
Bernoulli 0.217/0.251 0.181/0.152 0.239/0.239

NVDM+sig 0.232/0.248 0.174/0.184 0.193/0.219

Table 7: 3 Documents provided for 10% of Topics with 1 label per document.

Metric Model Bibtex Delicious ArXiv

PPX NVDM 16839 1994 1436
Bernoulli 946 2072 1000

NVDM+sig 20810 2034 1044

− log(p(x|υ))
NVDM 453 888 428

Bernoulli 438 923 435
NVDM+sig 452 912 401

P-NPMI NVDM 0.198 0.083 0.206
Bernoulli 0.206 0.073 0.235

NVDM+sig 0.229 0.094 0.237

NPMI (Avg/S) NVDM 0.240/0.243 0.141/0.190 0.216/0.206
Bernoulli 0.218/0.224 0.165/0.232 0.226/0.216

NVDM+sig 0.226/0.222 0.180/0.213 0.206/0.203

Table 8: 10 Documents provided for 10% of Topics with 50% labels per document.
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Metric Model Bibtex Delicious ArXiv

PPX NVDM 18254 1743 1262
Bernoulli 965 1752 1139

NVDM+sig 20860 2204 1052

− log(p(x|υ))
NVDM 450 883 428

Bernoulli 440 902 447
NVDM+sig 451 924 402

P-NPMI NVDM 0.189 0.062 0.232
Bernoulli 0.191 0.049 0.210

NVDM+sig 0.218 0.103 0.233

NPMI (Avg/S) NVDM 0.239/0.244 0.132/0.168 0.217/0.222
Bernoulli 0.224/0.229 0.161/0.153 0.219/0.226

NVDM+sig 0.230/0.222 0.183/0.186 0.201/0.211

Table 9: 10 Documents provided for 10% of Topics with 100% labels per document.
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