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Abstract
Data preprocessing or cleansing is one of the biggest hurdles
in industry for developing successful machine learning appli-
cations. The process of data cleansing includes data imputa-
tion, feature normalization & selection, dimensionality reduc-
tion, and data balancing applications. Currently such prepro-
cessing is manual. One approach for automating this process
is meta-learning. In this paper we experiment with state of
the art meta-learning methodologies and identify the inade-
quacies and research challenges for solving such a problem.

Introduction
Data cleansing which includes data imputation (filling in
missing values), feature normalization & selection, dimen-
sionality reduction, and data balancing can be a painfully
tedious, yet crucial process. Unfortunately, “dirty” data is
generally the rule in real-world industrial settings and so au-
tomated cleansing is highly valued. Meta-learning presents
a viable solution to this problem.

Introductory machine learning courses teach that models
can be applied to data intelligently by understanding their
behavior in relation to data (e.g., # of features or samples).
Meta-learning extends this paradigm by encoding datasets
with a vector representation (metafeatures) containing in-
formative statistics of the dataset. Assuming datasets lie on a
manifold, datasets nearby in metafeature space might behave
similarly when consumed by similar models; in other words,
the best cleansing approach for dataset A might work well
for nearby dataset B (see Figure 1). Current meta-learning
techniques generally employ the same metafeatures and dis-
tance metric (L1), however, it is not clear if these ad hoc
choices describe an accurate metafeature manifold.

Discovering a more accurate representation could help
close a large performance gap that we illuminate in our
experiments. We also test several metric learning methods,
however, none is able to shrink this gap. We conclude that
the metafeatures circulated by the community are inadequate
for this task and learning a better metafeature representa-
tion would benefit automated data cleansing (as well as Au-
toML) and our understanding of models’ behaviors on vari-
ous classes of datasets.
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Figure 1: Metafeature manifold—Datasets (more generally
tasks) whose embeddings are nearby in metafeature space
(light blue) should share similar preprocessing pipelines. We
challenge the community to learn such an embedding.

Meta-learning in Practice
Currently, metafeatures are chosen manually and a set of
standard features are used in the meta-learning literature [1,
2]. These include simple counts such as numbers of samples
& features and distributional statistics such as mean feature
skew. When meta-learning components are employed in au-
tomated systems, it is assumed that these features retain a
sufficient amount of information for distinguishing datasets
in terms of which models are best suited for them. Our re-
sults suggest otherwise.

Sequential model based optimization (SMBO) iteratively
updates an initial model seed (e.g., a data cleansing pipeline)
to improve downstream performance (e.g., classification er-
ror). Using meta-learning to provide a model seed has been
shown to significantly improve performance over randomly
selected model seeds [1], however, we demonstrate this is
likely an artifact of the meta-learning process and not a re-
sult of what meta-learning aims to promise.

Experimental Setup
As discussed in the introduction, the choice of distance met-
ric is typically ignored. By exploring a number of distance
metrics, we expect we might discover one that better repre-
sents the metafeature manifold than L1 distance. We eval-
uated M data cleansing pipelines on N datasets and com-



puted a metafeature vector for each of the N datasets. We
used 22 standard metafeatures from the literature. We re-
peated this experiment for three different data sources (avail-
able on author’s website): one constructed by artificially cre-
ating 432 binary classification datasets using Scikit-Learn’s
make classification method [4], another using 816
binary classification tasks created from web activity of var-
ious companies which use Adobe’s digital marketing solu-
tions, and a third consisting of 397 binary classification tasks
downloaded from OpenML.org [5]. We considered 192 dif-
ferent possible data cleansing pipelines each constituting a
sequence of preprocessing components with hyperparame-
ters (mean/mode imputation, feature selection by percentile,
L1/L2 feature normalization, over/under sampling, PCA)
in conjunction with L2-regularized logistic regression. We
were then able to rank the M data cleansing pipelines by
classification accuracy on each of the N datasets. To be able
to compare pipeline performance across datasets, we scaled
pipeline scores for each dataset to [0,1] (0 being the score
for the worst pipeline).

Using an appropriate distance metric, we expect that two
nearby datasets as measured by the metric, would rank the
data cleansing pipelines similarly. More importantly, they
would most likely agree on the top performing pipeline so
that similar datasets should be cleaned similarly. For in-
stance, an optimal metric would ensure the performance of
neighbor’s recommended pipelines decayed monotonically
with increasing dataset distance. In order to discover this
metric, we looked at five static metrics (L1, L2, L∞, cos,
Canberra), two learned L1 variants we developed, four Ma-
halanobis metric learning variants (e.g., LEGO [3]), and
three deep, Mahalanobis pseduo-metrics inspired by [6]. To
train these metrics, we designed two different sets of labels
from the pipeline performances (see previous paragraph).
Specifically, we trained our learned metrics using either a
ranking distance between dataset’s rankings of full pipelines
or dswap. Let Di denote dataset i, P ∗Di

denote the pipeline
with the highest score on Di, and Err(Di, Pj) denote the
normalized error obtained when cleaning Di with Pj . Then
dswap = 1

2 (Err(Di, P
∗
Dj

) + Err(Dj , P
∗
Di

)).

Results
Figure 2 compares various metrics to the optimal metric. We
omit other learned metrics due to space limits. Metric per-
formance is most important for the first few nearest neigh-
bors because only their recommended pipelines are accepted
in meta-learning approaches. Meta-learning with a random
metric (neighbors’ distances are generated randomly) out-
performs randomly selecting a single pipeline from the 192
possible pipelines (lower bound). This is because neighbors
only recommend their top 1 (or p) pipeline(s) and so gen-
erally low performing pipelines are pruned from the rec-
ommendation pool. Using a metric improves over the ran-
dom metric, however, the learned metric does not provide
any significant improvement. This was true across all the
metric learning algorithms. These results suggest the chosen
metafeatures are inadequate for describing a smooth mani-
fold, and that work on learning a more representative, yet ex-

Figure 2: Mean performance of kth nearest neighbor’s top
recommended pipeline for Adobe experiment. For exam-
ple, on average, using an optimal metric, a dataset’s 200th
nearest neighbor recommends a pipeline that would perform
only 5% worse than the best pipeline (see yellow star). In
contrast, L1 distance performs nearly 30% worse.

plainable set of metafeatures is necessary to advance meta-
learning.

Challenge
Our challenge to the community is to learn a metafeature
representation (with accompanying evaluation test) that is
well suited for meta-learning in the data cleansing task. Ac-
complishing this task will have impact beyond just auto-
mated data cleansing and the related goal of automated ma-
chine learning. An explainable metafeature representation
can be used to enhance our understanding of models ten-
dencies in the face of varying data as well as provide an
important educational tool.
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