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Abstract

Important aspects of human cognition, like creativity and
play, involve dealing with multiple divergent views of objects,
goals, and plans. We argue in this paper that the current model
of optimization that drives much of modern machine learning
research is far too restrictive a paradigm to mathematically
model the richness of human cognition. Instead, we pro-
pose a much more flexible and powerful framework of equi-
libration, which not only generalizes optimization, but also
captures a rich variety of other problems, from game theory,
complementarity problems, network equilibrium problems in
economics, and equation solving. Our thesis is that creative
activity involves dealing not with a single objective function,
which optimization requires, but rather balancing multiple di-
vergent and possibly contradictory goals. Such modes of cog-
nition are better modeled using the framework of variational
inequalities (VIs). We provide a brief review of this paradigm
for readers unfamiliar with the underlying mathematics, and
sketch out how VIs can account for creativity and play in hu-
man and animal cognition.

1 Introduction

In this short paper, we briefly outline a novel framework for
changing perspectives, such as occur in creative activity and
play, using the mathematical framework of variational in-
equalities (VIs) (Nagurney 1999; Facchinei and J. 2003).
The symposium goals discuss the motivation of modeling
contextual effects in human cognition, whereby the same
stimulus can appear in multiple divergent views, depend-
ing on the goals of the observer. The argument, made in-
formally in the symposium description, that current Al ap-
proaches rely on searching for a single “optimal” answer,
and hence fail to accurately model the richness of human
cognition finds much resonance in our recent work on using
the framework of VIs to introduce a novel framework for
machine learning. It is exactly this reliance on strict opti-
mization that motivated our work. In this document, we out-
line why VIs provide a much richer framework for modeling
context dependencies in human cognition. Our treatment of
VI theory will of necessity be brief, but we hope to elabo-
rate the main conceptual ideas in sufficient depth to make
it clear why this framework is a fundamental extension of
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Figure 1: Network model of a service-oriented internet
proposed in (Nagurney and Wolf 2014) in which service
providers and network providers compete on the basis of
quantity, quality, and price to maximize profit in the pres-
ence of demand markets.

the current optimization based approach to Al and machine
learning, as elaborated in standard texts.

Figure 1 illustrates our approach with an example in-
volving a complex sort of game played on a recent eco-
nomic model of the next-generation Internet, whereby con-
tent providers like Netflix play a Cournot-Nash game and
transport providers like Verizon play a Betrand game. We
have recently developed an algorithm to solve such net-
worked systems, which produces state of the art results’.
These game-theoretic models are well-established in the
economics literature, and seek to reinforce our argument
that VIs provide the right framework for modeling complex
context-sensitive processes in networked systems like the In-
ternet. In this networked economic model, there is no single
objective function being optimized, as such a unique crite-
rion does not exist. Each player in the network, whether it
be a content provider or a transport provider, has at their dis-
posal a set of levers they can adjust to achieve their unique
objectives (e.g., content providers adjust quantity delivered
to maximize their profits and transport providers adjust qual-
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ity and price of delivery to maximize their profits). These
criteria are often in conflict. The only available solution to
such networked systems is an equilibrium solution, which
the theory of VIs provides a rich framework to represent
and compute. Our principal thesis is that this is a desirable
mathematical framework for not only networked economic
systems, but rather carries over to modeling of human cog-
nition as well.

2 Brief Review of Variational Inequalities

Variational inequalities (VIs) are a rich and expressive math-
ematical framework that generalize convex optimization to
handle problems with asymmetric Jacobians, while preserv-
ing nice properties like convexity, and being able to solve a
vast array of diverse equilibrium problems, from game the-
ory to complementarity problems and nonlinear solutions of
equations. Originally proposed by Hartman and Stampac-
chia (Hartman and Stampacchia 1966) in the context of solv-
ing partial differential equations in mechanics, VIs gained
popularity in the finite-dimensional setting partly as a result
of Dafermos (Dafermos 1980), who showed that the traf-
fic network equilibrium problem could be formulated as a
finite-dimensional VI. This advance inspired much follow-
on research, showing that a variety of equilibrium problems
in economics, game theory, manufacturing etc. could also be
formulated as finite-dimensional VIs — the books by Nagur-
ney (Nagurney 1999) and Facchinei and Pang (Facchinei and
J. 2003) provide a detailed introduction to the theory and ap-
plications of finite-dimensional VIs.

As many readers may be unfamiliar with the mathematics
of VIs, we begin with a brief review. The formal definition
of a VI is as follows:

Definition 1. The finite-dimensional variational inequality
problem VI(EK) involves finding a vector x* € K C R"
such that

(F(z*),z—x") >0, Ve € K
where F' : K — R" is a given continuous function and K
is a given closed convex set, and (., .) is the standard inner
product in R™.

Figure 2 provides a geometric interpretation of a varia-
tional inequality.> The following general result characterizes
when solutions to VIs exist:

Theorem 1. Suppose K is compact, and that F : K — R”
is continuous. Then, there exists a solution to VI(F, K ).

As Figure 2 shows, z* is a solution to VI(F, K) if and
only if the angle between the vectors F'(z*) and x — z*, for
any vector z € K, is less than or equal to 90°. To build up
some intuition, the reduction of a few well-known problems
to a VI is now provided.

Theorem 2. Let x* be a solution to the optimization prob-
lem of minimizing a continuously differentiable function
f(x), subject to x € K, where K is a closed and con-
vex set. Then, x* is a solution to VI(V f,K), such that
(Vf(@*),z —z*) >0, Vz € K.

?In Figure 2, the normal cone C/(x*) at the vector z* of a con-
vex set K is defined as C'(z*) = {y € R"[{y,x —z") < 0,Vz €
K}.
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Figure 2: This figure provides a geometric interpretation of
the variational inequality VI(F, K). The mapping F' de-
fines a vector field over the feasible set /K such that at the
solution point z*, the vector field F'(z*) is directed inwards
at the boundary, and —F'(«*) is an element of the normal
cone C(z*) of K at ™.

Proof: Define ¢(t) = f(z* + t(x — z*)). Since ¢(t)
is minimized at ¢t = 0, it follows that 0 < ¢/(0) =
(Vf(x*),z —z*) > 0, Vo € K, that is z* solves the VL.
O

Theorem 3. If f(x) is a convex function, and x* is the so-
lution of VI(V f, K), then x* minimizes f.

Proof: Since f is convex, it follows that any tangent lies
below the function, that is f(z) > f(z*) + (Vf(z*),z —
x*), Vo € K. But, since z* solves the VI, it follows that
f(z*) is a lower bound on the value of f(x) everywhere, or
that * minimizes f. [

Crucially, VI problems cannot be converted back into op-
timization problems, unless a very restrictive condition is
met on the Jacobian of the mapping F.

Theorem 4. Assume F(x) is continuously differentiable on
K and that the Jacobian matrix VF (x) of partial deriva-
tives of F;(x) with respect to (w.rt) each x; is symmetric
and positive semidefinite. Then there exists a real-valued
convex function f : K — R satisfying V f(x) = F(x) with
x*, the solution of VI(F,K), also being the mathematical pro-
gramming problem of minimizing f(x) subject to x € K.

3 VI Algorithms

Section 3 reviews projection-based algorithms for solving
VIs, including the popular extragradient method (Korpele-
vich 1977).

Projection-Based Algorithms for Vs

The basic projection-based method (Algorithm 1) for solv-
ing VIs is one of the simplest methods, which relies on the
fixed point characterization of VIs.

Here, IIx p is the projector onto convex set K with re-
spect to the natural norm induced by D, where |z||%, =
(x,Dx). Tt can be shown that the basic projection algo-
rithm solves any VI(F, K) for which the mapping F is



Algorithm 1 The Basic Projection Algorithm for solving
VIs.

INPUT: Given VI(FK), and a symmetric positive definite
matrix D.

: Setk=0and x; € K.

repeat
Set xp41 HK,D(Ik — DilF(fEk))
Setk + k+ 1.

until 7, = U p(zp — D7 F (x)).

: Return x,
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strongly monotone * and Lipschitz.*A simple strategy is to
set D = o, where o > %, and L is the Lipschitz smooth-
ness constant, and p is the strong monotonicity constant.
The basic projection-based algorithm has two critical limita-
tions. First, it requires that the mapping F' be strongly mono-
tone. If, for example, F' is the gradient map of a contin-
uously differentiable function, strong monotonicity implies
the function must be strongly convex. Second, setting the
parameter « requires knowing the Lipschitz smoothness L
and the strong monotonicity parameter y. The extragradient
method of Korpolevich (Korpelevich 1977) addresses some
of these concerns, and is defined as Algorithm 2 below.

Algorithm 2 The Extragradient Algorithm for solving VIs.
INPUT: Given VI(EK), and a scalar a.

I: Setk =0and x; € K.

2: repeat

30 Setyg «+ Ui (xr — aF (xg)).

4:  Setxpy1 + U (zr — aF (yk)).

50 Setk <+ k+ 1.

6: until T = HK(ZL'k — OzF(iCk))

7: Return xy,

The extragradient algoriithm derives its name from the
property that it requires an “extra gradient” step (step 4 in
Algorithm 2), unlike the basic projection algorithm given
earlier as Algorithm 1. The principal advantage of the ex-
tragradient method is that it can be shown to converge under
a considerably weaker condition on the mapping F', which
now has to be merely monotonic: (F'(z)— F(y),z—y) > 0.
The earlier Lipschitz condition is still necessary for conver-
gence.

The extragradient algorithm has been the topic of much
attention in solving VIs since it was proposed, e.g., see
(Iusem and Svaiter 1997; Khobotov 1987; Marcotte 1991;
Peng and Yao 2008; Nesterov 2007; Solodov and Svaiter
1999). Khobotov (Khobotov 1987) proved that the extra-
gradient method converges under the weaker requirement of
pseudo-monotone mappings, > when the learning rate is au-

3 A mapping F is strongly monotone if (F(z) — F(y),x —vy) >

*A mapping F is Lipschitz if |F(z) — F(y)|l2 < Lljz —
y|‘27vm7y € K.

A mapping F is pseudo-monotone if (F(y),z —y) > 0 =
(F(z),z —y) >0, Vz,y € K.

—F(xxk)

Figure 3: Right: One iteration of the extradient algorithm.

tomatically adjusted based on a local measure of the Lip-
schitz constant. Iusem (Iusem and Svaiter 1997) proposed
a variant whereby the current iterate was projected onto a
hyperplane separating the current iterate from the final solu-
tion, and subsequently projected from the hyperplane onto
the feasible set. Solodov and Svaiter (Solodov and Svaiter
1999) proposed another hyperplane method, whereby the
current iterate is projected onto the intersection of the hyper-
plane and the feasible set. Finally, the extragradient method
was generalized to the non-Euclidean case by combining
it with the mirror-descent method (Nemirovksi and Yudin
1983), resulting in the so-called “mirrror-prox” algorithm
(Juditsky and Nemirovski 2011).

4 Context Modeling using VIs

Finally, we sketch the application of the above VI theory
and algorithms to the modeling of human cognition. At
the heart of our approach is the reliance on VIs to model
multiple interacting goals in a network to achieve equilib-
rium solutions. This is nicely illustrated by our first ex-
ample of the service-oriented economic model of the In-
ternet, whereby content providers and transport providers
are both optimizing different objectives. In such networked
equilibrium problems, there is no notion of an optimal so-
lution. Instead, what’s possible is to find equilibrium solu-
tions, whereby each player can optimize relative to choices
made by the other agents in the system. In much the same
way, context effects in human cognition, which lie at the
heart of goal-oriented perception, curiosity and play can be
captured by the VI framework. We briefly sketch out several
examples of how the VI framework allows modeling each of
these phenomena.

Context Effects in Perception

The organizers ask us to imagine “how might we model di-
vergently unconventional perspectives in a top-down fashion
in robotics”? A similar argument made with regard to the
networked Internet economic model shown in the first figure
carries over to human cognition, where the world appears
as a series of interconnected objects to a viewer. An office
appears as such not because of a single object, but due to
the multitude of objects spatially arranged in a certain net-
worked pattern (e.g., books on shelves, computer on desk,
chairs on floor etc.). Human cognition is acutely sensitive to
not just the presence of individual objects, but rather to the
context of objects appearing in spatial proximity. We can



model the process of arriving at divergent views of a given
scene, therefore, using the process of finding equilibria in
networked systems, a singular ability of the VI framework.
Depending on the nature of the equilibrium solution that is
found of a networked model of a scene, divergent perspec-
tives of the whole scene emerge. Thus, a house may not be
recognized as a “house” because the individual components
of the network may “settle” on a divergent view of its parts.

Curiosity and Play

Another example we are asked to consider is how “...in play,
an agent deliberately projects a conceptual organization onto
an object for which it is not conventionally suited (e.g. think
of how children turn boring household objects into excit-
ing props for their flights of fancy). In this playful explo-
ration, backgrounded properties of an object may now be-
come salient, leading to creative insights and solutions for
future problems.” Once again, to model such a situation, the
use of VIs is especially germane because individual features
of an object can now be considered the elements of the net-
work, rather than multiple objects. In the first case above,
the entire scene was modeled as a network. Here, an in-
dividual object, say a “’chair” or a "bottle” is modeled as a
network of components or features, and the VI framework
is used to compute an equilibrium solution of the network
“flows”, much as in the service-oriented network example.

Social Cognition

Similar to the argument made above, social cognition may
come about from the competition between multiple goals.
Defining a single objective function for something as ab-
stract as a social attribute may be impossible, however, a
concept like empathy may arise from the interplay of mul-
tiple objectives. It’s not only this interplay that could make
such complex mechanisms possible, but also the existence
of a feasible region that constrains the meanings available
to the agent forcing equilibria to exist on boundaries that it
would not have typically. This notion of equilibria exhibit-
ing meanings in increasingly complex networks draws from
ideas popularized by Douglas Hofstadter in “Godel, Escher,
Bach: An Eternal Golden Braid” and more recently by the
study of supernetworks (Nagurney and Dong 2002) in VIs.

Cognition and Divergent Perspectives

Here, we introduce a novel technique for modeling divergent
cognitive activity. This idea is motivated by interpretations
of the brain as a nonlinear dynamical system, a subject that
has undergone deep examination over the past 15 years. Re-
cent dynamical models are able to explain cognitive activity
as the “sequential switching between different metastable
cognitive states” (Rabinovich et al. 2008). These systems
exhibit complex phase space stability and take advantage of
stable limit cycles to maintain cognitive states. Stable limit
cycles are not fixed points though and hence cannot coincide
with the solution to a variational inequality. Although VI’s
expressibility in modeling cognition is limited in this way,
it’s not an immediate drawback. We should keep the initial
transition from optimization to equilibration simple and so
shrinking the set of possible dynamics is helpful.

To begin, we need to briefly paint the picture of VI’s sister
theory, projected dynamical systems (PDS) - see (Nagurney
and Zhang 1996) for details. PDS is essentially VIs from an
algorithmic perspective. Imagine initializing the projection
based method for VIs with some initial vector zg € K. The
algorithm will generate a sequence of successive x’s form-
ing a trajectory that ultimately converges at a fixed point (as-
suming o was in the neighborhood of a stable equilibrium).
Now, run that algorithm for all the possible initial points in
K and you’ll have a clear view of the dynamics enforced by
F'. Equivalently, you can simply view the vector field, F’,
and deduce the behavior of the system.

The service-oriented internet example showed how net-
works of nodes governed by profit maximizing forces could
define a vector valued map F' with a corresponding equilib-
rium. Here, we start with the map F' and assume a suitable
network representation with corresponding governing forces
exists. For instance, the network could be a web of neu-
rons competing to emphasize concepts in the mind of the
observer by indirectly controlling nerve impulses through
neurotransmitter releases at synapses. Although a represen-
tation like this one may aid intuition, in the context of ma-
chine learning, the existence of a such a network is unnec-
essary to the validity of the model; it is only a pedagogical
tool.

We will now give a simplistic example of how VIs might
be used to model diverging perspectives. Let F' € R? be
defined as follows where A is a square 2 X 2 matrix and b is
a2 x 1 vector. F' and x are then 2 x 1. The feasible set K
is a unit box in the second quadrant of R2.

(F(z*),x —2*) >0, Ve e K
F(x)=Ax+b
<[s 3

asz Q4

For simplicity, we’ll take b to be a vector of zeros. The
entries in A will correspond to features a;, or activation lev-
els, gathered from data. The vector = corresponds to a phase
space that is abstracted a level above the features a;. For
instance, the features could be indicator variables for the
presence of objects in a scene weighted by their inherent
importance relative to the other objects as well as the confi-
dence levels that those objects have, in fact, been identified
correctly. For our example, let a1, as, as, and a4 function in
this way and represent a frying pan, a bowl of vegetables, a
burglar, and a bottle of oil respectively. Furthermore, let the
elements in = represent the concepts “cooking” and “bur-
glary” on the x-axis and y-axis respectively. A high value
means that concept is active in the scene while a low value
means that concept is dormant.

In the matrix displayed in Figure 4, features a1, as, and
a4 are all nonzero meaning they are activated in the current
sample. The burglar, feature a3, however, is not present. The
resulting dynamics of this system are such that the bottom
right corner (z = [0,0]7) is a stable fixed point meaning the
concept “cooking” is active.

In Figure 5, feature ag is slightly activated. The features
a1, ag, and a4 are still the same. The overall dynamics of
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Figure 4: Dynamics of the F' mapping created by the ap-
pearance of various objects in the scene. The corresponding
matrix A is displayed below the phase-space plot. In this
example, the burglar is not present (a3 = 0).
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Figure 5: Dynamics of the F' mapping created by the ap-
pearance of various objects in the scene. The corresponding
matrix A is displayed below the phase-space plot. In this ex-
ample, the burglar feature is marginally active (a3 = —0.1).

the system have not changed and the vector z still implies
the scene is “cooking” related.

In the final sample, Figure 6, the burglar feature is highly
active and has completely changed the dynamics of the sys-
tem rendering the original fixed point unstable. The vector
x follows a trajectory diverging away from the original fixed
point across the phase space and settles at a new fixed point
in the top left corner against the boundary. The location of
this new fixed point in the phase space is highly associated
with “burglary”.

This is a very basic example. One can imagine a larger
phase space with multiple equilibria and more complex dy-
namics. Ingrained perspectives could become divergent
once active features cross critical thresholds. Once that
happens, x wanders the phase space (creativity and play)
through possibly meaningless regions before converging on
a new cognitive state (unconventional perspective).

Furthermore, the features need not be completely inde-
pendent of the observer. If, for instance, the observer is sus-
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Figure 6: Dynamics of the F' mapping created by the ap-
pearance of various objects in the scene. The corresponding
matrix A is displayed below the phase-space plot. In this ex-
ample, the burglar feature is sufficiently active (a3 = —3).

picious of an intruder or naturally cautious in general, the
“burglar” feature, a3, may be weighted more heavily. This
would cause the observer to change their perception of the
scene at a lower critical threshold. We could then create
goal-oriented perception by subscribing to various feature
weights representing different mental lenses.

5 Conclusion

We argued that the current model of optimization is too re-
strictive a framework to capture human cognition. It consid-
ers only a single objective function, and from a dynamical
systems standpoint, it admits only a small family of possi-
ble dynamical behaviors. The theory of variational inequali-
ties, on the other hand, provides additional flexibility to sup-
port multiple possibly conflicting objectives as well as an
extended family of dynamical behaviors enabling a richer
paradigm to model cognitive activity. We also presented
several explanations including a basic example for how VIs
might be used to model curiosity, play, social cognition, di-
vergent perspectives, and goal-oriented perception.
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